Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Overview

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

We propose a method to learn multiple gaits of quadruped robot using hierarchical reinforcement learning. We designed a hierarchical controller and a learning framework that could learn and show multiple gaits in a single policy. Every experiment was done in RAISIM simulator link.

Using our method, quadruped robot can learn multiple gaits including Trot, Pace, and Bound(imperfect). We further successfully learned multiple gait in a single policy using our framework. To show the existence of optimal gaits for specific velocity range, we held an analysis of mechanical energy usage for each learned gaits. Check the paper for detailed results.

Method

Result

  1. Trot

2. Pace

3. Bound (imperfect)

4. Multiple gaits in a single policy (Pace & Bound)

Cite

@inproceedings{kim2021multiplegait,
    author = {Kim, Yunho and Son, Bukun and Lee, Dongjun},
    title = {Learning multiple gaits of quadruped robot using hierarchical reinforcement learning},
    booktitle={http://arxiv.org/abs/2112.04741},
    year={2021}
}
You might also like...
Robot Reinforcement Learning on the Constraint Manifold
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation
A custom-designed Spider Robot trained to walk using Deep RL in a PyBullet Simulation

SpiderBot_DeepRL Title: Implementation of Single and Multi-Agent Deep Reinforcement Learning Algorithms for a Walking Spider Robot Authors(s): Arijit

Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Comments
  •  I seriously doubt the rationality of the method used in the article.

    I seriously doubt the rationality of the method used in the article.

    First, only the reference motion of the thigh joint is used in the experiment. According to the characteristics of reinforcement learning, legal multi-gait motion can not be obtained.

    Second, the CPG signal is not used as the input of the strategy network in the experiment, but only the phase parameter is input. Using only one hot coding is not enough to help the strategy network successfully learn different gait.

    What can prove this is that the URDF file is not provided in the code, and using the code in the code warehouse can not get the effect shown in the article.

    opened by chillybird 6
Owner
Yunho Kim
Yunho Kim
MohammadReza Sharifi 27 Dec 13, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 7, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 7, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for produce an anomaly score. Then, we merge these two score and produce merged anomaly score as a result.

Zekeriyya Demirci 1 Jan 9, 2022
LBK 20 Dec 2, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

Med-AIR@CUHK 55 Jan 3, 2023
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 7, 2023
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

null 87 Jan 7, 2023