Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Overview

Intro

Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and Systems (RSS 2022)

[Project page] [Paper]

Dependencies

Set conda environment

conda create -n quadruped_nav python=3.8
conda activate quadruped_nav

Install torch(1.10.1), numpy(1.21.2), matplotlib, scipy, ruamel.yaml

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install numpy=1.21.2
conda install matplotlib
conda install scipy
pip install ruamel.yaml

Install wandb and login. 'wandb' is a logging system similar to 'tensorboard'.

pip install wandb
wandb login

Install required python packages to compute Dynamic Time Warping in Parallel

pip install dtw-python
pip install fastdtw
pip install joblib

Install OMPL (Open Motion Planning Library). Python binding version of OMPL is used.

Download OMPL installation script in https://ompl.kavrakilab.org/installation.html.
chmod u+x install-ompl-ubuntu.sh
./install-ompl-ubuntu.sh --python

Simulator setup

RaiSim is used. Install it following the installation guide.

Then, set up RaisimGymTorch as following.

cd /RAISIM_DIRECTORY_PATH/raisimLib
git clone [email protected]:awesomericky/complex-env-navigation.git
cd complex-env-navigation
python setup.py develop

Path setup

Configure following paths. Parts that should be configured is set with TODO: PATH_SETUP_REQUIRED flag.

  1. Project directory
    • cfg['path']['home'] in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml
  2. OMPL Python binding
    • OMPL_PYBIND_PATH in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/global_planner.py

Train model

Set logging: True in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/train/cfg.yaml, if you want to enable wandb logging.

Train Forward Dynamics Model (FDM).

  • Click 'c' to continue when pdb stops the code
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained velocity command tracking controller should be given with -tw flag.
  • Evaluations of FDM are visualized in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/trajectory_prediction_plot.
python raisimGymTorch/env/envs/train/FDM_train.py -tw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/command_tracking_flat/final/full_16200.pt

Download data to train Informed Trajectory Sampler (386MB) [link]

# Unzip the downloaded zip file and move it to required path.
unzip analytic_planner_data.zip
mv analytic_planner_data /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/.

Train Informed Trajectory Sampler (ITS)

  • Click 'c' to continue when pdb stops the code.
  • To quit the training, click 'Ctrl + c' to call pdb. Then click 'q'.
  • Path of the trained Forward Dynamics Model should be given with -fw flag.
python raisimGymTorch/env/envs/train/ITS_train.py -fw /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/data/FDM_train/XXX/full_XXX.pt

Run demo

Configure the trained weight paths (cfg['path']['FDM'] and cfg['path']['ITS']) in /RAISIM_DIRECTORY_PATH/raisimLib/complex-env-navigation/raisimGymTorch/env/envs/test/cfg.yaml. Parts that should be configured is set with TODO: WEIGHT_PATH_SETUP_REQUIRED flag.

Open RaiSim Unity to see the visualized simulation.

Run point-goal navigation with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/pgn_runner.py

Run safety-remote control with trained weight (click 'c' to continue when pdb stops the code)

python raisimGymTorch/env/envs/test/src_runner.py

To quit running the demo, click 'Ctrl + c' to call pdb. Then click 'q'.

Extra notes

  • This repository is not maintained anymore. If you have a question, send an email to [email protected].
  • We don't take questions regarding installation. If you install the dependencies successfully, you can easily run this.
  • For the codes in rsc/, ANYbotics' license is applied. MIT license otherwise.
  • More details of the provided velocity command tracking controller for quadruped robots in flat terrain can be found in this paper and repository.

Cite

@INPROCEEDINGS{Kim-RSS-22, 
    AUTHOR    = {Yunho Kim AND Chanyoung Kim AND Jemin Hwangbo}, 
    TITLE     = {Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation}, 
    BOOKTITLE = {Proceedings of Robotics: Science and Systems}, 
    YEAR      = {2022}, 
    ADDRESS   = {New York, USA}, 
    MONTH     = {June}
} 
You might also like...
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

Official implementation for
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

[CVPR 2022] Official PyTorch Implementation for
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

Official PyTorch implementation of SyntaSpeech (IJCAI 2022)
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Owner
Yunho Kim
Yunho Kim
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 4, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 8, 2023
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 5, 2023
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News ?? 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 1, 2022