Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Overview

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Notes

  • I probably still left some absolute path in the project. When running a script, please check the paths used for loading dataset, saving models and etc.

Repo Structure

The section contains the structure graph of this project and some simple descriptions of folders

  • For more detailed description of each script, please refer to the README inside each folder.

  • Every item with . extension is a file/script. Items without . extension are folders.

  • Folders like dataset, models, backup are not actually empty. But because they usually hold fairly large files/datasets I decided to not upload the content directly to github (.gitignore are left in those folders as placeholders). Please contact me directly if you need those files.

│   env.yml: environment file (under Windows 10) for Conda. Use this to generate a working environment
│
├───evsi: scripts/data related to EVSI portion of this project
│   │   get_EVSI.ipynb
│   │   get_models.ipynb
│   │   ranking_and_correlation.ipynb
│   │   sensitivity_analysis.ipynb
│   │   training_and_evsi_fs.ipynb
│   │
│   ├───backup: results of each run of `training_and_evsi_fs.ipynb`.
│   ├───dataset: raw data of the TE dataset
│   ├───log: relevant metrics generated after the current run
│   │       acc.csv
│   │       acc_improvement.csv
│   │       sensitivity_analysis.csv
│   │       sensor_selection.csv
│   │
│   └───models: frozen LSTM models saved after the current run
│       ├───evsi: models trained for EVSI purpose
│       └───ml: models trained for forward stepwise selection purpose
|
└───ml
    │   LSTM_RandomForest.ipynb
    │   LSTM_workflow.ipynb
    │   README.md
    │   visulization.ipynb
    │
    ├───dataset: raw data of the TE dataset
    ├───models: frozen LSTM models that are used to pick the top 10 impactful features
    └───plots: plots generated to demonstrate the 10 most impactful features
            test_advantage.png
            validation_advantage.png

Dataset

The dataset used in this project is the Tennessee Eastman Process Simulation Data presented here

More Info

For more information about this project, for example, the structure of the dataset, please refer to this document

You might also like...
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Code repo for EMNLP21 paper
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

The repo for the paper
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

Owner
Berkeley Expert System Technologies Lab
Berkeley Expert System Technologies Lab
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

null 223 Dec 17, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 3, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 7, 2023
Repo for the Video Person Clustering dataset, and code for the associated paper

Video Person Clustering Repo for the Video Person Clustering dataset, and code for the associated paper. This reporsitory contains the Video Person Cl

Andrew Brown 47 Nov 2, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

null 19 Oct 27, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 9, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

null 32 Sep 21, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022