Non-Vacuous Generalisation Bounds for Shallow Neural Networks

Overview

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data.

To run in a nix-shell with required packages (at specific versions used

nix-shell

Results are generated from main.py, running with arguments required, e.g. python main.py --lr --width . The results as described in the paper are in csv files in the results subfolder.

Figures in the paper can be reproduced by running analysis.py. To generate plots with the bounds and errors using the same scale (as described in the appendix), set the variable BOUND_SCALE_AXIS in this file to False.

You might also like...
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Pytorch code for paper
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Code for
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Owner
Felix Biggs
PhD researcher in machine learning @UCL and @INRIA.
Felix Biggs
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

null 3 Mar 9, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

null 44 Sep 15, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022