Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Overview

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides visitors

Project | Tweet

This repo is the official implementation of our paper "Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides".

Our paper is accepted by Frontiers in Oncology, and you can also get access our paper from MedRxiv.

Abstract

  • Objectives: To develop and validate a deep learning (DL)-based primary tumor biopsy signature for predicting axillary lymph node (ALN) metastasis preoperatively in early breast cancer (EBC) patients with clinically negative ALN.

  • Methods: A total of 1,058 EBC patients with pathologically confirmed ALN status were enrolled from May 2010 to August 2020. A DL core-needle biopsy (DL-CNB) model was built on the attention-based multiple instance-learning (AMIL) framework to predict ALN status utilizing the DL features, which were extracted from the cancer areas of digitized whole-slide images (WSIs) of breast CNB specimens annotated by two pathologists. Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas under the ROC curve (AUCs) were analyzed to evaluate our model.

  • Results: The best-performing DL-CNB model with VGG16_BN as the feature extractor achieved an AUC of 0.816 (95% confidence interval (CI): 0.758, 0.865) in predicting positive ALN metastasis in the independent test cohort. Furthermore, our model incorporating the clinical data, which was called DL-CNB+C, yielded the best accuracy of 0.831 (95% CI: 0.775, 0.878), especially for patients younger than 50 years (AUC: 0.918, 95% CI: 0.825, 0.971). The interpretation of DL-CNB model showed that the top signatures most predictive of ALN metastasis were characterized by the nucleus features including density (p = 0.015), circumference (p = 0.009), circularity (p = 0.010), and orientation (p = 0.012).

  • Conclusion: Our study provides a novel DL-based biomarker on primary tumor CNB slides to predict the metastatic status of ALN preoperatively for patients with EBC.

Data

Our data includes whole slide images (WSIs) of breast cancer patients and the corresponding clinical data. According to the axillary lymph node (ALN) metastasis, 1058 patients are divided into the following 3 categories:

  • N0: having no positive lymph nodes (655 patients, 61.9%).
  • N+(1~2): having one or two positive lymph nodes (210 patients, 19.8%).
  • N+(>2): having three or more positive lymph nodes (193 patients, 18.3%).

Here we have provided some WSI samples and clinical data samples, you can review our paper for more details.

For full access to the BALNMP Dataset, please contact us and the usage of BALNMP Dataset must follow the license.

WSI samples

N0

N0

N+(1~2)

N+(1~2)

N+(>2)

N+(>2)

Clinical Data Samples

clinical-data-sample

Pre-Trained Models

Please download pre-trained models from here.

Demo Software

We have also provided software for easily checking the performance of our model to predict ALN metastasis.

Please download the software from here, and check the README.txt for usage. Please note that this software is only used for demo, and it cannot be used for other purposes.

demo-software

Citation

Please cite our paper in your publications if it helps your research.

@article{xu2021predicting,
  title={Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides},
  author={Xu, Feng and Zhu, Chuang and Tang, Wenqi and Wang, Ying and Zhang, Yu and Li, Jie and Jiang, Hongchuan and Shi, Zhongyue and Liu, Jun and Jin, Mulan},
  journal={Frontiers in Oncology},
  pages={4133},
  year={2021},
  publisher={Frontiers}
}

License

This BALNMP Dataset is made freely available to academic and non-academic entities for non-commercial purposes such as academic research, teaching, scientific publications, or personal experimentation. Permission is granted to use the data given that you agree to our license terms bellow:

  1. That you include a reference to the BALNMP Dataset in any work that makes use of the dataset. For research papers, cite our preferred publication as listed on our website; for other media cite our preferred publication as listed on our website or link to the BALNMP website.
  2. That you do not distribute this dataset or modified versions. It is permissible to distribute derivative works in as far as they are abstract representations of this dataset (such as models trained on it or additional annotations that do not directly include any of our data).
  3. That you may not use the dataset or any derivative work for commercial purposes as, for example, licensing or selling the data, or using the data with a purpose to procure a commercial gain.
  4. That all rights not expressly granted to you are reserved by us.

Contact

You might also like...
A geometric deep learning pipeline for predicting protein interface contacts.
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

VGG16 model-based classification project about brain tumor detection.
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

 Predicting Student Attentiveness using OpenCV
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Comments
  • Questions about the .jpg WSIs resolution

    Questions about the .jpg WSIs resolution

    Hello, Thank you for your selfless data sharing, But it seems you only provide .jpg WSIs without telling the resolution.

    So, can you tell me the resolution of the data conversion?

    opened by pzSuen 2
  • Global-Chem Partnership with BALNMP

    Global-Chem Partnership with BALNMP

    Hello,

    My name is Suliman Sharif and I am author of a python package called Global-Chem - A Dictionary from common chemical names to their molecular definition.

    We have been keeping tracking of your as part of our medical database resources and noticed it went down with our monitor:

    https://github.com/Sulstice/Uptime-Medical-Informatics

    I want to know if you would like us to host your data at no cost to you to ensure the database is maintained for however long as part of our open source chemical database network. This is to build our knowledge graph in how chemical data relates to cancer imaging.

    The data would still be maintained by you. Would that be something you would be interested in?

    Thank you, -Suliman

    opened by Sulstice 0
Owner
CVSM Group - email: [email protected]
Codes of our papers are released in this GITHUB account.
CVSM Group -  email: czhu@bupt.edu.cn
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Nafis Ahmed 1 Dec 28, 2021
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

null 757 Dec 30, 2022
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 6, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

null 1 Oct 27, 2021
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 6, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021