Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Overview

Deep Illuminator

Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image. It has been tested with several datasets and models and has been shown to succesfully improve performance. It has a built in visualizer created with Streamlit to preview how the target image can be relit. This tool has an accompanying paper.

Example Augmentations

Usage

The simplest method to use this tool is through Docker Hub:

docker pull kartvel/deep-illuminator

Visualizer

Once you have the Deep Illuminator image run the following command to launch the visualizer:

docker run -it --rm  --gpus all \
-p 8501:8501 --entrypoint streamlit \ 
kartvel/deep-illuminator run streamlit/streamlit_app.py

You will be able to interact with it on localhost:8501. Note: If you do not have NVIDIA gpu support enabled for docker simply remove the --gpus all option.

Generating Variants

It is possible to quickly generate multiple variants for images contained in a directory by using the following command:

docker run -it --rm --gpus all \                                                                                               ─╯
-v /path/to/input/images:/app/probe_relighting/originals \
-v /path/to/save/directory:/app/probe_relighting/output \
kartvel/deep-illuminator --[options]

Options

Option Values Description
mode ['synthetic', 'mid'] Selecting the style of probes used as a relighting guide.
step int Increment for the granularity of relighted images. max mid: 24, max synthetic: 360

Buidling Docker image or running without a container

Please read the following for other options: instructions

Benchmarks

Improved performance of R2D2 for MMA@3 on HPatches

Training Dataset Overall Viewpoint Illumination
COCO - Original 71.0 65.4 77.1
COCO - Augmented 72.2 (+1.7%) 65.7 (+0.4%) 79.2 (+2.7%)
VIDIT - Original 66.7 60.5 73.4
VIDIT - Augmented 69.2 (+3.8%) 60.9 (+0.6%) 78.1 (+6.4%)
Aachen - Original 69.4 64.1 75.0
Aachen - Augmented 72.6 (+4.6%) 66.1 (+3.1%) 79.6 (+6.1%)

Improved performance of R2D2 for the Long-Term Visual Localization challenge on Aachen v1.1

Training Dataset 0.25m, 2° 0.5m, 5° 5m, 10°
COCO - Original 62.3 77.0 79.5
COCO - Augmented 65.4 (+5.0%) 83.8 (+8.8%) 92.7 (+16%)
VIDIT - Original 40.8 53.4 61.3
VIDIT - Augmented 53.9 (+32%) 71.2 (+33%) 83.2(+36%)
Aachen - Original 60.7 72.8 83.8
Aachen - Augmented 63.4 (+4.4%) 81.7 (+12%) 92.1 (+9.9%)

Acknowledgment

The developpement of the VAE for the visualizer was made possible by the PyTorch-VAE repository.

Bibtex

If you use this code in your project, please consider citing the following paper:

@misc{chogovadze2021controllable,
      title={Controllable Data Augmentation Through Deep Relighting}, 
      author={George Chogovadze and Rémi Pautrat and Marc Pollefeys},
      year={2021},
      eprint={2110.13996},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

Neural Factorization of Shape and Reflectance Under An Unknown Illumination
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

Official implementation of
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Comments
  • Unable to access Google Drive files

    Unable to access Google Drive files

    Hi, I am trying to test your code but I am unable to access the google drive for the pretrained model. If you have time, could you pls send this files to me([email protected]).

    Thanks again for the project!

    Regards,

    opened by pixel-lt 1
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

null 62 Dec 21, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

null 45 Dec 8, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 9, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

null 368 Dec 26, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

null 114 Dec 10, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

null 4 Feb 13, 2022