Final-project-robokeeper created by GitHub Classroom

Related tags

Hardware RoboKeeper
Overview

RoboKeeper!

Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson


Robokeeper being a boss height=

Demonstration Videos

Equipment

Hardware:
  • HDT Global Adroit Manipulator Arm
  • Intel RealSense Camera
Software:
  • Robot Operating System (ROS)
  • MoveIt!
  • OpenCV
  • AprilTag

Quickstart Guide

  1. Install ROS Noetic on Ubuntu 20.04
  2. Create catkin workspace
    $ source /opt/ros/noetic/setup.bash
    $ mkdir -p ~/catkin_ws/src
    $ cd ~/catkin_ws/
    $ catkin_make
    
  3. Copy this repository into src folder
    $ cd ~/catkin_ws/src
    $ git clone [email protected]:ME495-EmbeddedSystems/final-project-robokeeper.git
    
  4. Install required packages and build
    $ source devel/setup.bash
    $ rosdep install --from-paths src --ignore-src -r -y
    $ catkin_make
    

Running the package

  1. First, run the main launchfile. To run the program on the real robot, run the command below.

    roslaunch robokeeper robokeeper_go.launch
    
  2. If using a simulation, add the sim:=true argument when running the main launchfile.

    roslaunch robokeeper robokeeper_go.launch sim:=true
    
  3. The robot now has to pick up the paddle and this is done with two services. First, call above_paddle.

    rosservice call /above_paddle
    
  4. Next, call the 'retrieve_paddle` service.

    rosservice call /retrieve_paddle
    
  5. Call the reset service to move the robot in front of the goal.

    rosservice call /reset
    
  6. Call start_keeping to enable the goal keeping component of the project.

    rosservice call /start_keeping
    
  7. When finished, call the 'stop_keeping' service.

    rosservice call /stop_keeping 
    

Launchfiles

robokeeper_go.launch

This is the main launchfile used to operate robokeeper. It starts by launching robokeeper_moveit.launch which loads the necessary urdf file and hardware configuration, as well as the main MoveIt! executable. It then launches intel_cam.launch which starts the Intel Realsense camera. It also starts a transforms node which handles the calculation of transformation between various frames within the world. Finally, the launchfile starts a motion_control node that publishes appropriate joint state messages to actuate the arm.

robokeeper_moveit.launch

This launchfile loads robot description for the Adroit 6-dof manipulator arm, as well as its hardware and controller configuration from the hdt_6dof_a24_pincer_description package. It also includes move_group.launch from the hdt_6dof_a24_pincer_moveit package, which starts the move group that MoveIt! uses to plan the motion of the arm.

intel_cam.launch

This launchfile starts the Intel Realsense camera by launching rs_camera.launch from the realsense2_camera package. It then launches AprilTag_detection.launch for AprilTag integration.

AprilTag_detection.launch

This launchfile loads parameters necessary for integrating AprilTag detection, which is crucial for detecting the position of the robot relative to the camera. It starts apriltag_ros_continuous_node from the apriltag_ros package.

Nodes

perception

The perception node is responsible for handling the data collected from the Intel RealSense camera utilized to identify and locate the objects that our robot is tasked with blocking. It contains a CV bridge to enable OpenCV integration with ROS, subscribes to the RealSense's camera data, and ultimately publishes 3-dimensional coordinate data of the centroid of the object of interest (a red ball for our purposes).

In order to identify the ball, video frames are iteratively thresholded for a range of HSV values that closely match those of our ball. Once the area of interest is located, a contour is created around its edges and the centroid of the contour located. This centroid can then be treated as the location of the ball in the camera frame and published appropriately.

transforms

Knowing where the ball is relative to the camera is great, but it doesn't help the robot locate the ball. In order to accomplish this, transformations between the camera frame and the robot frame are necessary. This node subscribes to both the ball coordinates from the perception node and AprilTag detections, and publishes the transformed ball coordinates in the robot frame.

In order to complete the relationship between the two frames, an AprilTag with a known transformation between itself and the baselink of the robot (positioned on the floor next to the robot) was used. Using the RealSense, the transformation between the camera frame and the AprilTag can then also be determined. Using these three frames and their relationships, the transformation between coordinates in the camera frame and coordinates in the robot frame can finally be determined.

motion_control

This node provides the core functionality of the robokeeper. Primarily, it subscribes to the topic containing the ball coordinates in the robot frame and contains a number of services utilized to interact with its environment in several ways.

The main service used is /start_keeping. As the name suggests, this service allows the robot to begin interpreting the ball coordinates and attempting to intersect it at the goal line. Appropriate joint trajectory commands are sent to the robot through a mix of MoveIt! and direct joint publishing (depending on the service called) in order to accomplish the task. This node also keeps track of goals scored by determining if the ball has entered the net.

Services

  1. The reset service moves the Adroit arm directly in front of its base and the goal.

    rosservice call /reset
    
  2. The keep service moves the robotic arm to a pose that is only dependent on a y-value. An example of the service being called follows.

    rosservice call /keep "pos: 0.0"
    
  3. above_paddle is a service that moves the arm directly above the paddle holster to get in a position for consistent retrieval.

    rosservice call /above_paddle
    
  4. To retrieve the paddle, the retrieve_paddle can be called. It moves the arm to a postion where it can grip the paddle, it then closes the gripper, and finally moves to the same position as above_paddle.

    rosservice call /retrieve_paddle
    
  5. The start_keeping service enables the robot to block the red ball from entering the goal.

    rosservice call /start_keeping
    
  6. To stop the robot from moving and tracking the ball, call the stop_keeping service.

    rosservice call /stop_keeping 
    

Additional Notes

There are some features within this code that were partially developed, but not completed due to time contraints. Because of this, you may notice certain things in the source code that are not mentioned here.

An example of this is the scoreboard feature. The original plan was to include both a goal counter and block counter when playing with the robot and display these stats to the user in order to create a game. The goal counter was successfully created, but we didn't have time to complete the black counter. The goal counter is located within the 'motion_control' node and the infrastructure for displaying the actual scoreboard using the 'tkinter' library is located in a node called 'scorekeeper'.

You might also like...
ArucoFollow - A script for Robot Operating System and it is a part of a project Robot
ArucoFollow - A script for Robot Operating System and it is a part of a project Robot

ArucoFollow ArucoFollow is a script for Robot Operating System and it is a part

DNP3 Stalker is a project to analyze and interact with DNP3 devices

DNP3 Stalker Purpose DNP3 Stalker is a project to analyze and interact with DNP3

An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

stories-matiasucker created by GitHub Classroom
stories-matiasucker created by GitHub Classroom

Stories do Instagram Este projeto tem como objetivo desenvolver uma pequena aplicação que simule os efeitos e funcionalidades ao estilo Instagram. A a

204-python-string-21BCA90 created by GitHub Classroom

204-Python This repository is created for subject "204 Programming Skill" Python Programming. This Repository contain list of programs of python progr

Covid-19-Trends - A project that me and my friends created as the CSC110 Final Project at UofT

Covid-19-Trends Introduction The COVID-19 pandemic has caused severe financial s

My first Minecraft CPU. Created in collaboration with Peer Carnes as a final project in CS 281: Architecture and Assembly at the University of Puget Sound
My first Minecraft CPU. Created in collaboration with Peer Carnes as a final project in CS 281: Architecture and Assembly at the University of Puget Sound

Minecraft CPU This is my first ever Minecraft CPU, created in collaboration with Peer Carnes. We created a custom assembly language, including an asse

Dicionario-git-github - Dictionary created to help train new users of Git and GitHub applications
Dicionario-git-github - Dictionary created to help train new users of Git and GitHub applications

Dicionário 📕 Dicionário criado com o objetivo de auxiliar no treinamento de nov

Assassination API for getting random quotes from Assassination Classroom.
Assassination API for getting random quotes from Assassination Classroom.

Assassination API Take advantage of what you have, while you have it. Quotes from Assassination Classroom Assassination classroom is one of best anime

An app to automatically take attendance by scanning students' bar coded ID card as they enter the classroom.

Auto Classroom Attendance This application may be run on a PC to automatically scan students' ID card using a generic bar code scanner and output the

A Classroom Engagement Platform

Project Introduction This is project introduction Setup Setting up Postgres This is the most tricky part when setting up the application. You will nee

It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Fourth and final milestone project
Fourth and final milestone project

Milestone Project 4: Pound Dog Click link to visit "Pound Dog" Aim of the project The aim of this project is to provide access to a website informing

Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

4Geeks Academy Full-Stack Developer program final project.

Final Project Chavi, Clara y Pablo 4Geeks Academy Full-Stack Developer program final project. Authors Javier Manteca - Coding - chavisam Clara Rojano

Rottentomatoes, Goodreads and IMDB sites crawler. Semantic Web final project.

Crawler Rottentomatoes, Goodreads and IMDB sites crawler. Crawler written by beautifulsoup, selenium and lxml to gather books and films information an

Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Owner
Cody Nichoson
Cody Nichoson
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 9, 2022
The project is an open-source and low-cost kit to get started with underactuated robotics.

Torque Limited Simple Pendulum Introduction The project is an open-source and low-cost kit to get started with underactuated robotics. The kit targets

null 34 Dec 14, 2022
Cascade Drone Swarm Physical Demonstration Project

Cascade Drone Swarm Physical Demonstration Project Table of Contents About The Project Built With Getting Started Prerequisites Installation About The

null 3 Aug 24, 2022
A simple Picobot project implemented in Python

Python-Picobot A simple Picobot project implemented in Python About Explanation This is my first programming project. Picobot use rules.txt file which

Shayan Shiravani 0 Apr 3, 2022
The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry )

shredder-Machine-Hand-Safety The main aim of this project is to avoid the accidents in shredding ( Waste Recycling Industry ) . The Basic function of

Shubham Chaudhari 1 Nov 15, 2021
The goal of this project is for anyone with an old printer to be able to double-sided printing.

Welcome to PDF-double-side! Hi! I'm 15. I have a old printer so I can't print double-sided outs. The goal of this project is for anyone with an old pr

DejaVu 4 Dec 28, 2021
A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon.

ButterStick GPDI LiteX demo A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon. Getting started Connect GPDI board t

null 4 Nov 21, 2021
A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge device

holiday-star balena ❤️ adafruitIO Introduction A DiY holiday project to demonstrate how you can send data from adafruitIO cloud to a balena edge devic

Ayan Pahwa 3 Dec 20, 2021
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

null 8 Dec 15, 2022
CO2Ampel - This RaspberryPi project uses weather data to estimate the share of renewable energy in the power grid

CO2Ampel This RaspberryPi project uses weather data to estimate the share of ren

Felix 4 Jan 19, 2022