(open-mmlab) lxz@lxz-System-Product-Name:~/KunPeng_Liu/AlignPS$ /bin/bash /home/lxz/KunPeng_Liu/AlignPS/run_train.sh
fatal: not a git repository (or any of the parent directories): .git
2021-09-13 17:36:13,497 - mmdet - INFO - Environment info:
sys.platform: linux
Python: 3.7.10 | packaged by conda-forge | (default, Feb 19 2021, 16:07:37) [GCC 9.3.0]
CUDA available: True
CUDA_HOME: /usr/local/cuda-11.0
NVCC: Build cuda_11.0_bu.TC445_37.28845127_0
GPU 0: NVIDIA GeForce RTX 3090
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.7.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2021.3-Product Build 20210617 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v1.6.0 (Git Hash 5ef631a030a6f73131c77892041042805a06064f)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.0
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.0.3
- Magma 2.5.2
- Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DUSE_VULKAN_WRAPPER -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.8.0
OpenCV: 4.5.3
MMCV: 1.3.13
MMDetection: 2.4.0+
MMDetection Compiler: GCC 7.3
MMDetection CUDA Compiler: 11.0
2021-09-13 17:36:14,238 - mmdet - INFO - Distributed training: False
2021-09-13 17:36:14,971 - mmdet - INFO - Config:
dataset_type = 'CuhkDataset'
data_root = '/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/'
img_norm_cfg = dict(
mean=[103.53, 116.28, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(667, 400), (1000, 600), (1333, 800), (1500, 900),
(1666, 1000), (2000, 1200)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_ids'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1500, 900),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=5,
workers_per_gpu=5,
train=dict(
type='CuhkDataset',
ann_file=
'/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/train_pid.json',
img_prefix='/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/frames/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(667, 400), (1000, 600), (1333, 800), (1500, 900),
(1666, 1000), (2000, 1200)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_ids'])
]),
val=dict(
type='CuhkDataset',
ann_file=
'/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/test_pid.json',
img_prefix='/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/frames/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1500, 900),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='CuhkDataset',
ann_file=
'/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/test_pid.json',
img_prefix='/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/frames/',
proposal_file=
'/home/lxz/KunPeng_Liu/dataset/PRW/PRW-v16.04.20/annotation/test/train_test/TestG50.mat',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1500, 900),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[103.53, 116.28, 123.675],
std=[1.0, 1.0, 1.0],
to_rgb=False),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=1, metric='bbox')
norm_cfg = dict(type='BN', requires_grad=False)
model = dict(
type='SingleTwoStageDetector176PRW',
pretrained='open-mmlab://detectron2/resnet50_caffe',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe'),
rpn_head=dict(
type='RPNHead',
in_channels=1024,
feat_channels=1024,
anchor_generator=dict(
type='AnchorGenerator',
scales=[2, 4, 8, 16, 32],
ratios=[0.5, 1.0, 2.0],
strides=[16]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='PersonSearchRoIHead2Input1',
shared_head=dict(
type='ResLayer',
depth=50,
stage=3,
stride=2,
dilation=1,
style='caffe',
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=0),
out_channels=1024,
featmap_strides=[16]),
bbox_head=dict(
type='PersonSearchNormAwareNewoim2InputBNBBoxHeadPRW',
with_avg_pool=True,
roi_feat_size=7,
in_channels=2048,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=10.0))),
neck=dict(
type='FPNDcnLconv3Dcn',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs=True,
extra_convs_on_inputs=False,
num_outs=5,
relu_before_extra_convs=True),
bbox_head=dict(
type='FCOSReidHeadFocalSubTriQueue3PRW',
num_classes=1,
in_channels=256,
stacked_convs=4,
feat_channels=256,
strides=[8, 16, 32, 64, 128],
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=1.0),
loss_centerness=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
norm_on_bbox=True,
centerness_on_reg=True,
dcn_on_last_conv=True,
center_sampling=True,
conv_bias=True))
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=12000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.1,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=128,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False)
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=6000,
nms_post=300,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100),
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)
optimizer = dict(type='SGD', lr=0.0015, momentum=0.9, weight_decay=0.0005)
optimizer_config = dict(grad_clip=dict(max_norm=10, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1141,
warmup_ratio=0.005,
step=[16, 22])
total_epochs = 24
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
work_dir = './work_dirs/faster_rcnn_r50_caffe_c4_1x_cuhk_single_two_stage17_6_nae1_prw'
gpu_ids = [0]
/home/lxz/.local/lib/python3.7/site-packages/mmcv/utils/misc.py:324: UserWarning: "out_size" is deprecated in RoIAlign.__init__
, please use "output_size" instead
f'"{src_arg_name}" is deprecated in '
/home/lxz/.local/lib/python3.7/site-packages/mmcv/utils/misc.py:324: UserWarning: "sample_num" is deprecated in RoIAlign.__init__
, please use "sampling_ratio" instead
f'"{src_arg_name}" is deprecated in '
2021-09-13 17:36:15,307 - mmdet - INFO - load model from: open-mmlab://detectron2/resnet50_caffe
2021-09-13 17:36:15,308 - mmdet - INFO - Use load_from_openmmlab loader
2021-09-13 17:36:15,367 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: conv1.bias
2021-09-13 17:36:15,432 - mmdet - INFO - Use load_from_openmmlab loader
2021-09-13 17:36:15,477 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: conv1.weight, conv1.bias, bn1.bias, bn1.weight, bn1.running_mean, bn1.running_var, layer1.0.downsample.0.weight, layer1.0.downsample.1.bias, layer1.0.downsample.1.weight, layer1.0.downsample.1.running_mean, layer1.0.downsample.1.running_var, layer1.0.conv1.weight, layer1.0.bn1.bias, layer1.0.bn1.weight, layer1.0.bn1.running_mean, layer1.0.bn1.running_var, layer1.0.conv2.weight, layer1.0.bn2.bias, layer1.0.bn2.weight, layer1.0.bn2.running_mean, layer1.0.bn2.running_var, layer1.0.conv3.weight, layer1.0.bn3.bias, layer1.0.bn3.weight, layer1.0.bn3.running_mean, layer1.0.bn3.running_var, layer1.1.conv1.weight, layer1.1.bn1.bias, layer1.1.bn1.weight, layer1.1.bn1.running_mean, layer1.1.bn1.running_var, layer1.1.conv2.weight, layer1.1.bn2.bias, layer1.1.bn2.weight, layer1.1.bn2.running_mean, layer1.1.bn2.running_var, layer1.1.conv3.weight, layer1.1.bn3.bias, layer1.1.bn3.weight, layer1.1.bn3.running_mean, layer1.1.bn3.running_var, layer1.2.conv1.weight, layer1.2.bn1.bias, layer1.2.bn1.weight, layer1.2.bn1.running_mean, layer1.2.bn1.running_var, layer1.2.conv2.weight, layer1.2.bn2.bias, layer1.2.bn2.weight, layer1.2.bn2.running_mean, layer1.2.bn2.running_var, layer1.2.conv3.weight, layer1.2.bn3.bias, layer1.2.bn3.weight, layer1.2.bn3.running_mean, layer1.2.bn3.running_var, layer2.0.downsample.0.weight, layer2.0.downsample.1.bias, layer2.0.downsample.1.weight, layer2.0.downsample.1.running_mean, layer2.0.downsample.1.running_var, layer2.0.conv1.weight, layer2.0.bn1.bias, layer2.0.bn1.weight, layer2.0.bn1.running_mean, layer2.0.bn1.running_var, layer2.0.conv2.weight, layer2.0.bn2.bias, layer2.0.bn2.weight, layer2.0.bn2.running_mean, layer2.0.bn2.running_var, layer2.0.conv3.weight, layer2.0.bn3.bias, layer2.0.bn3.weight, layer2.0.bn3.running_mean, layer2.0.bn3.running_var, layer2.1.conv1.weight, layer2.1.bn1.bias, layer2.1.bn1.weight, layer2.1.bn1.running_mean, layer2.1.bn1.running_var, layer2.1.conv2.weight, layer2.1.bn2.bias, layer2.1.bn2.weight, layer2.1.bn2.running_mean, layer2.1.bn2.running_var, layer2.1.conv3.weight, layer2.1.bn3.bias, layer2.1.bn3.weight, layer2.1.bn3.running_mean, layer2.1.bn3.running_var, layer2.2.conv1.weight, layer2.2.bn1.bias, layer2.2.bn1.weight, layer2.2.bn1.running_mean, layer2.2.bn1.running_var, layer2.2.conv2.weight, layer2.2.bn2.bias, layer2.2.bn2.weight, layer2.2.bn2.running_mean, layer2.2.bn2.running_var, layer2.2.conv3.weight, layer2.2.bn3.bias, layer2.2.bn3.weight, layer2.2.bn3.running_mean, layer2.2.bn3.running_var, layer2.3.conv1.weight, layer2.3.bn1.bias, layer2.3.bn1.weight, layer2.3.bn1.running_mean, layer2.3.bn1.running_var, layer2.3.conv2.weight, layer2.3.bn2.bias, layer2.3.bn2.weight, layer2.3.bn2.running_mean, layer2.3.bn2.running_var, layer2.3.conv3.weight, layer2.3.bn3.bias, layer2.3.bn3.weight, layer2.3.bn3.running_mean, layer2.3.bn3.running_var, layer3.0.downsample.0.weight, layer3.0.downsample.1.bias, layer3.0.downsample.1.weight, layer3.0.downsample.1.running_mean, layer3.0.downsample.1.running_var, layer3.0.conv1.weight, layer3.0.bn1.bias, layer3.0.bn1.weight, layer3.0.bn1.running_mean, layer3.0.bn1.running_var, layer3.0.conv2.weight, layer3.0.bn2.bias, layer3.0.bn2.weight, layer3.0.bn2.running_mean, layer3.0.bn2.running_var, layer3.0.conv3.weight, layer3.0.bn3.bias, layer3.0.bn3.weight, layer3.0.bn3.running_mean, layer3.0.bn3.running_var, layer3.1.conv1.weight, layer3.1.bn1.bias, layer3.1.bn1.weight, layer3.1.bn1.running_mean, layer3.1.bn1.running_var, layer3.1.conv2.weight, layer3.1.bn2.bias, layer3.1.bn2.weight, layer3.1.bn2.running_mean, layer3.1.bn2.running_var, layer3.1.conv3.weight, layer3.1.bn3.bias, layer3.1.bn3.weight, layer3.1.bn3.running_mean, layer3.1.bn3.running_var, layer3.2.conv1.weight, layer3.2.bn1.bias, layer3.2.bn1.weight, layer3.2.bn1.running_mean, layer3.2.bn1.running_var, layer3.2.conv2.weight, layer3.2.bn2.bias, layer3.2.bn2.weight, layer3.2.bn2.running_mean, layer3.2.bn2.running_var, layer3.2.conv3.weight, layer3.2.bn3.bias, layer3.2.bn3.weight, layer3.2.bn3.running_mean, layer3.2.bn3.running_var, layer3.3.conv1.weight, layer3.3.bn1.bias, layer3.3.bn1.weight, layer3.3.bn1.running_mean, layer3.3.bn1.running_var, layer3.3.conv2.weight, layer3.3.bn2.bias, layer3.3.bn2.weight, layer3.3.bn2.running_mean, layer3.3.bn2.running_var, layer3.3.conv3.weight, layer3.3.bn3.bias, layer3.3.bn3.weight, layer3.3.bn3.running_mean, layer3.3.bn3.running_var, layer3.4.conv1.weight, layer3.4.bn1.bias, layer3.4.bn1.weight, layer3.4.bn1.running_mean, layer3.4.bn1.running_var, layer3.4.conv2.weight, layer3.4.bn2.bias, layer3.4.bn2.weight, layer3.4.bn2.running_mean, layer3.4.bn2.running_var, layer3.4.conv3.weight, layer3.4.bn3.bias, layer3.4.bn3.weight, layer3.4.bn3.running_mean, layer3.4.bn3.running_var, layer3.5.conv1.weight, layer3.5.bn1.bias, layer3.5.bn1.weight, layer3.5.bn1.running_mean, layer3.5.bn1.running_var, layer3.5.conv2.weight, layer3.5.bn2.bias, layer3.5.bn2.weight, layer3.5.bn2.running_mean, layer3.5.bn2.running_var, layer3.5.conv3.weight, layer3.5.bn3.bias, layer3.5.bn3.weight, layer3.5.bn3.running_mean, layer3.5.bn3.running_var
loading annotations into memory...
Done (t=0.03s)
creating index...
index created!
fatal: not a git repository (or any of the parent directories): .git
2021-09-13 17:36:16,813 - mmdet - INFO - Start running, host: lxz@lxz-System-Product-Name, work_dir: /home/lxz/KunPeng_Liu/AlignPS/work_dirs/faster_rcnn_r50_caffe_c4_1x_cuhk_single_two_stage17_6_nae1_prw
2021-09-13 17:36:16,813 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(VERY_LOW ) TextLoggerHook
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
after_train_epoch:
(NORMAL ) CheckpointHook
(VERY_LOW ) TextLoggerHook
before_val_epoch:
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
before_val_iter:
(LOW ) IterTimerHook
after_val_iter:
(LOW ) IterTimerHook
after_val_epoch:
(VERY_LOW ) TextLoggerHook
2021-09-13 17:36:16,813 - mmdet - INFO - workflow: [('train', 1)], max: 24 epochs
/home/lxz/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/functional.py:2952: UserWarning: nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
/home/lxz/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/nn/functional.py:3063: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
"See the documentation of nn.Upsample for details.".format(mode))
/home/lxz/KunPeng_Liu/AlignPS/mmdet/models/dense_heads/fcos_reid_head_focal_sub_triqueue3_prw.py:306: UserWarning: This overload of nonzero is deprecated:
nonzero()
Consider using one of the following signatures instead:
nonzero(*, bool as_tuple) (Triggered internally at /opt/conda/conda-bld/pytorch_1603729047590/work/torch/csrc/utils/python_arg_parser.cpp:882.)
& (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [0,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [1,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [2,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [3,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [4,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [5,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [6,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [7,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [8,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [9,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [10,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [11,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [12,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [13,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [14,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [15,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [16,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [17,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [18,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [19,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [20,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [21,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [22,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [23,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [24,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [25,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [26,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [27,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [28,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [29,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [30,0,0] Assertion t >= 0 && t < n_classes
failed.
/opt/conda/conda-bld/pytorch_1603729047590/work/aten/src/THCUNN/ClassNLLCriterion.cu:187: cunn_ClassNLLCriterion_updateGradInput_kernel: block: [0,0,0], thread: [31,0,0] Assertion t >= 0 && t < n_classes
failed.
Traceback (most recent call last):
File "tools/train.py", line 177, in
main()
File "tools/train.py", line 173, in main
meta=meta)
File "/home/lxz/KunPeng_Liu/AlignPS/mmdet/apis/train.py", line 146, in train_detector
runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
File "/home/lxz/.local/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 127, in run
epoch_runner(data_loaders[i], **kwargs)
File "/home/lxz/.local/lib/python3.7/site-packages/mmcv/runner/epoch_based_runner.py", line 51, in train
self.call_hook('after_train_iter')
File "/home/lxz/.local/lib/python3.7/site-packages/mmcv/runner/base_runner.py", line 307, in call_hook
getattr(hook, fn_name)(self)
File "/home/lxz/.local/lib/python3.7/site-packages/mmcv/runner/hooks/optimizer.py", line 35, in after_train_iter
runner.outputs['loss'].backward()
File "/home/lxz/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/tensor.py", line 221, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/home/lxz/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/autograd/init.py", line 132, in backward
allow_unreachable=True) # allow_unreachable flag
File "/home/lxz/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/autograd/function.py", line 89, in apply
return self._forward_cls.backward(self, *args) # type: ignore
File "/home/lxz/KunPeng_Liu/AlignPS/mmdet/models/roi_heads/bbox_heads/oim_nae_new.py", line 29, in backward
if y >= 0:
RuntimeError: CUDA error: device-side assert triggered
When i implementation AlignPS, the program can run sucessfully.