I tried to train on my custom data in coco format but no matter how I train for 10 epochs or 300 epochs I still get mAP=0,my custom data is originally in YOLOV5 format so I use this https://github.com/RapidAI/YOLO2COCO to convert my YOLOV5 format data into coco format and I also check the label which is correct.Besides I also have changed the classes in yolox/data/datasets/coco_classes.py to my own classes.However the result disappointed me again,then I tried to use the datasets https://drive.google.com/file/d/16N3u36ycNd70m23IM7vMuRQXejAJY9Fs/view?usp=sharing you guys suggest in the train_custom_data.md,but for well-known reasons in China I can hardly download it,so I also suggest you provide a BaiduYun version which is more friendly to our students.
Here is my train_log.txt:
2021-08-15 21:54:11.090 | INFO | yolox.core.trainer:before_train:126 - args: Namespace(experiment_name='606', name=None, dist_backend='nccl', dist_url=None, batch_size=8, devices=0, exp_file='exps/example/custom/606.py', resume=False, ckpt='yolox_s.pth', start_epoch=None, num_machines=1, machine_rank=0, fp16=True, occupy=False, opts=[])
2021-08-15 21:54:11.091 | INFO | yolox.core.trainer:before_train:127 - exp value:
╒══════════════════╤════════════════════════════╕
│ keys │ values │
╞══════════════════╪════════════════════════════╡
│ seed │ None │
├──────────────────┼────────────────────────────┤
│ output_dir │ './YOLOX_outputs' │
├──────────────────┼────────────────────────────┤
│ print_interval │ 10 │
├──────────────────┼────────────────────────────┤
│ eval_interval │ 1 │
├──────────────────┼────────────────────────────┤
│ num_classes │ 8 │
├──────────────────┼────────────────────────────┤
│ depth │ 0.33 │
├──────────────────┼────────────────────────────┤
│ width │ 0.5 │
├──────────────────┼────────────────────────────┤
│ data_num_workers │ 0 │
├──────────────────┼────────────────────────────┤
│ input_size │ (640, 640) │
├──────────────────┼────────────────────────────┤
│ random_size │ (14, 26) │
├──────────────────┼────────────────────────────┤
│ data_dir │ 'datasets/coco128' │
├──────────────────┼────────────────────────────┤
│ train_ann │ 'instances_train2017.json' │
├──────────────────┼────────────────────────────┤
│ val_ann │ 'instances_val2017.json' │
├──────────────────┼────────────────────────────┤
│ degrees │ 10.0 │
├──────────────────┼────────────────────────────┤
│ translate │ 0.1 │
├──────────────────┼────────────────────────────┤
│ scale │ (0.1, 2) │
├──────────────────┼────────────────────────────┤
│ mscale │ (0.8, 1.6) │
├──────────────────┼────────────────────────────┤
│ shear │ 2.0 │
├──────────────────┼────────────────────────────┤
│ perspective │ 0.0 │
├──────────────────┼────────────────────────────┤
│ enable_mixup │ True │
├──────────────────┼────────────────────────────┤
│ warmup_epochs │ 5 │
├──────────────────┼────────────────────────────┤
│ max_epoch │ 10 │
├──────────────────┼────────────────────────────┤
│ warmup_lr │ 0 │
├──────────────────┼────────────────────────────┤
│ basic_lr_per_img │ 0.00015625 │
├──────────────────┼────────────────────────────┤
│ scheduler │ 'yoloxwarmcos' │
├──────────────────┼────────────────────────────┤
│ no_aug_epochs │ 15 │
├──────────────────┼────────────────────────────┤
│ min_lr_ratio │ 0.05 │
├──────────────────┼────────────────────────────┤
│ ema │ True │
├──────────────────┼────────────────────────────┤
│ weight_decay │ 0.0005 │
├──────────────────┼────────────────────────────┤
│ momentum │ 0.9 │
├──────────────────┼────────────────────────────┤
│ exp_name │ '606' │
├──────────────────┼────────────────────────────┤
│ test_size │ (640, 640) │
├──────────────────┼────────────────────────────┤
│ test_conf │ 0.01 │
├──────────────────┼────────────────────────────┤
│ nmsthre │ 0.65 │
╘══════════════════╧════════════════════════════╛
2021-08-15 21:54:11.239 | INFO | yolox.core.trainer:before_train:132 - Model Summary: Params: 8.94M, Gflops: 26.65
2021-08-15 21:54:13.208 | INFO | apex.amp.frontend:initialize:328 - Selected optimization level O1: Insert automatic casts around Pytorch functions and Tensor methods.
2021-08-15 21:54:13.208 | INFO | apex.amp.frontend:initialize:329 - Defaults for this optimization level are:
2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - enabled : True
2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - opt_level : O1
2021-08-15 21:54:13.209 | INFO | apex.amp.frontend:initialize:331 - cast_model_type : None
2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - patch_torch_functions : True
2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - keep_batchnorm_fp32 : None
2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - master_weights : None
2021-08-15 21:54:13.210 | INFO | apex.amp.frontend:initialize:331 - loss_scale : dynamic
2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:336 - Processing user overrides (additional kwargs that are not None)...
2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:354 - After processing overrides, optimization options are:
2021-08-15 21:54:13.211 | INFO | apex.amp.frontend:initialize:356 - enabled : True
2021-08-15 21:54:13.212 | INFO | apex.amp.frontend:initialize:356 - opt_level : O1
2021-08-15 21:54:13.213 | INFO | apex.amp.frontend:initialize:356 - cast_model_type : None
2021-08-15 21:54:13.214 | INFO | apex.amp.frontend:initialize:356 - patch_torch_functions : True
2021-08-15 21:54:13.215 | INFO | apex.amp.frontend:initialize:356 - keep_batchnorm_fp32 : None
2021-08-15 21:54:13.216 | INFO | apex.amp.frontend:initialize:356 - master_weights : None
2021-08-15 21:54:13.217 | INFO | apex.amp.frontend:initialize:356 - loss_scale : dynamic
2021-08-15 21:54:13.221 | INFO | apex.amp.scaler:init:64 - Warning: multi_tensor_applier fused unscale kernel is unavailable, possibly because apex was installed without --cuda_ext --cpp_ext. Using Python fallback. Original ImportError was: ModuleNotFoundError("No module named 'amp_C'")
2021-08-15 21:54:13.223 | INFO | yolox.core.trainer:resume_train:292 - loading checkpoint for fine tuning
2021-08-15 21:54:13.351 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.0.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.0.weight in model is torch.Size([8, 128, 1, 1]).
2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.0.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.0.bias in model is torch.Size([8]).
2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.1.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.1.weight in model is torch.Size([8, 128, 1, 1]).
2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.1.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.1.bias in model is torch.Size([8]).
2021-08-15 21:54:13.352 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.2.weight in checkpoint is torch.Size([80, 128, 1, 1]), while shape of head.cls_preds.2.weight in model is torch.Size([8, 128, 1, 1]).
2021-08-15 21:54:13.353 | WARNING | yolox.utils.checkpoint:load_ckpt:24 - Shape of head.cls_preds.2.bias in checkpoint is torch.Size([80]), while shape of head.cls_preds.2.bias in model is torch.Size([8]).
2021-08-15 21:54:13.377 | INFO | yolox.data.datasets.coco:init:43 - loading annotations into memory...
2021-08-15 21:54:13.405 | INFO | yolox.data.datasets.coco:init:43 - Done (t=0.03s)
2021-08-15 21:54:13.406 | INFO | pycocotools.coco:init:89 - creating index...
2021-08-15 21:54:13.407 | INFO | pycocotools.coco:init:89 - index created!
2021-08-15 21:54:13.433 | INFO | yolox.core.trainer:before_train:153 - init prefetcher, this might take one minute or less...
2021-08-15 21:54:13.746 | INFO | yolox.data.datasets.coco:init:43 - loading annotations into memory...
2021-08-15 21:54:13.749 | INFO | yolox.data.datasets.coco:init:43 - Done (t=0.00s)
2021-08-15 21:54:13.749 | INFO | pycocotools.coco:init:89 - creating index...
2021-08-15 21:54:13.749 | INFO | pycocotools.coco:init:89 - index created!
2021-08-15 21:54:13.759 | INFO | yolox.core.trainer:before_train:183 - Training start...
2021-08-15 21:54:13.762 | INFO | yolox.core.trainer:before_train:184 -
YOLOX(
(backbone): YOLOPAFPN(
(backbone): CSPDarknet(
(stem): Focus(
(conv): BaseConv(
(conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(dark2): Sequential(
(0): BaseConv(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
)
(dark3): Sequential(
(0): BaseConv(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(1): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(2): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
)
(dark4): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(1): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(2): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
)
(dark5): Sequential(
(0): BaseConv(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): SPPBottleneck(
(conv1): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): ModuleList(
(0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
(1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
(2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
)
(conv2): BaseConv(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(2): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
)
)
(upsample): Upsample(scale_factor=2.0, mode=nearest)
(lateral_conv0): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(C3_p4): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
(reduce_conv1): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(C3_p3): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
(bu_conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(C3_n3): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
(bu_conv1): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(C3_n4): CSPLayer(
(conv1): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv3): BaseConv(
(conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(m): Sequential(
(0): Bottleneck(
(conv1): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(conv2): BaseConv(
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
)
)
(head): YOLOXHead(
(cls_convs): ModuleList(
(0): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(1): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(2): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
(reg_convs): ModuleList(
(0): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(1): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(2): Sequential(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
)
(cls_preds): ModuleList(
(0): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 8, kernel_size=(1, 1), stride=(1, 1))
)
(reg_preds): ModuleList(
(0): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
)
(obj_preds): ModuleList(
(0): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
)
(stems): ModuleList(
(0): BaseConv(
(conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(1): BaseConv(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
(2): BaseConv(
(conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
(act): SiLU(inplace=True)
)
)
(l1_loss): L1Loss()
(bcewithlog_loss): BCEWithLogitsLoss()
(iou_loss): IOUloss()
)
)
2021-08-15 21:54:13.766 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch1
2021-08-15 21:54:13.766 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:54:13.767 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:54:16.905 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 32768.0
2021-08-15 21:54:17.337 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0
2021-08-15 21:54:17.771 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 8192.0
2021-08-15 21:54:18.230 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 4096.0
2021-08-15 21:54:18.684 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 2048.0
2021-08-15 21:54:19.135 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 1024.0
2021-08-15 21:54:20.592 | INFO | apex.amp.handle:skip_step:138 - Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 512.0
2021-08-15 21:54:21.105 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 10/88, mem: 3017Mb, iter_time: 0.733s, data_time: 0.208s, total_loss: 21.5, iou_loss: 4.2, l1_loss: 3.2, conf_loss: 12.5, cls_loss: 1.5, lr: 6.457e-07, size: 640, ETA: 0:10:38
2021-08-15 21:54:25.868 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 20/88, mem: 3017Mb, iter_time: 0.476s, data_time: 0.201s, total_loss: 18.7, iou_loss: 4.2, l1_loss: 2.9, conf_loss: 10.2, cls_loss: 1.5, lr: 2.583e-06, size: 640, ETA: 0:08:39
2021-08-15 21:54:33.831 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 30/88, mem: 3881Mb, iter_time: 0.796s, data_time: 0.254s, total_loss: 16.9, iou_loss: 4.1, l1_loss: 3.2, conf_loss: 8.0, cls_loss: 1.6, lr: 5.811e-06, size: 704, ETA: 0:09:28
2021-08-15 21:54:41.413 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 40/88, mem: 3881Mb, iter_time: 0.758s, data_time: 0.219s, total_loss: 14.7, iou_loss: 3.9, l1_loss: 2.7, conf_loss: 6.7, cls_loss: 1.3, lr: 1.033e-05, size: 672, ETA: 0:09:40
2021-08-15 21:54:46.458 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 50/88, mem: 3881Mb, iter_time: 0.504s, data_time: 0.219s, total_loss: 13.2, iou_loss: 3.5, l1_loss: 2.6, conf_loss: 6.0, cls_loss: 1.2, lr: 1.614e-05, size: 672, ETA: 0:09:02
2021-08-15 21:54:51.804 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 60/88, mem: 3881Mb, iter_time: 0.534s, data_time: 0.146s, total_loss: 12.2, iou_loss: 3.7, l1_loss: 2.3, conf_loss: 5.3, cls_loss: 0.9, lr: 2.324e-05, size: 512, ETA: 0:08:39
2021-08-15 21:54:55.538 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 70/88, mem: 3881Mb, iter_time: 0.373s, data_time: 0.143s, total_loss: 11.0, iou_loss: 3.5, l1_loss: 1.9, conf_loss: 4.8, cls_loss: 0.8, lr: 3.164e-05, size: 512, ETA: 0:08:02
2021-08-15 21:55:02.818 | INFO | yolox.core.trainer:after_iter:242 - epoch: 1/10, iter: 80/88, mem: 3881Mb, iter_time: 0.728s, data_time: 0.184s, total_loss: 8.8, iou_loss: 2.8, l1_loss: 1.4, conf_loss: 3.9, cls_loss: 0.7, lr: 4.132e-05, size: 576, ETA: 0:08:10
2021-08-15 21:55:10.084 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:55:17.377 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:55:17.451 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:55:17.473 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.02s)
2021-08-15 21:55:17.474 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:55:17.475 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:55:17.546 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.26 ms, Average NMS time: 1.11 ms, Average inference time: 7.37 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:55:17.547 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:55:17.696 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch2
2021-08-15 21:55:17.696 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:55:17.697 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:55:22.867 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 10/88, mem: 3881Mb, iter_time: 0.517s, data_time: 0.223s, total_loss: 7.6, iou_loss: 2.6, l1_loss: 1.3, conf_loss: 3.1, cls_loss: 0.7, lr: 6.201e-05, size: 640, ETA: 0:08:10
2021-08-15 21:55:26.814 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 20/88, mem: 3881Mb, iter_time: 0.394s, data_time: 0.143s, total_loss: 7.0, iou_loss: 2.6, l1_loss: 1.2, conf_loss: 2.5, cls_loss: 0.7, lr: 7.531e-05, size: 512, ETA: 0:07:47
2021-08-15 21:55:32.197 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 30/88, mem: 3881Mb, iter_time: 0.538s, data_time: 0.140s, total_loss: 5.2, iou_loss: 2.0, l1_loss: 0.8, conf_loss: 1.9, cls_loss: 0.6, lr: 8.990e-05, size: 544, ETA: 0:07:36
2021-08-15 21:55:40.492 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 40/88, mem: 3881Mb, iter_time: 0.829s, data_time: 0.271s, total_loss: 6.5, iou_loss: 2.1, l1_loss: 1.2, conf_loss: 2.6, cls_loss: 0.6, lr: 1.058e-04, size: 800, ETA: 0:07:44
2021-08-15 21:55:45.579 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 50/88, mem: 3881Mb, iter_time: 0.508s, data_time: 0.204s, total_loss: 5.5, iou_loss: 2.0, l1_loss: 0.9, conf_loss: 2.1, cls_loss: 0.5, lr: 1.230e-04, size: 640, ETA: 0:07:32
2021-08-15 21:55:53.270 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 60/88, mem: 3881Mb, iter_time: 0.769s, data_time: 0.252s, total_loss: 4.2, iou_loss: 1.6, l1_loss: 0.8, conf_loss: 1.5, cls_loss: 0.5, lr: 1.414e-04, size: 736, ETA: 0:07:34
2021-08-15 21:55:57.769 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 70/88, mem: 3881Mb, iter_time: 0.449s, data_time: 0.175s, total_loss: 5.2, iou_loss: 2.2, l1_loss: 0.9, conf_loss: 1.5, cls_loss: 0.6, lr: 1.612e-04, size: 544, ETA: 0:07:20
2021-08-15 21:56:01.607 | INFO | yolox.core.trainer:after_iter:242 - epoch: 2/10, iter: 80/88, mem: 3881Mb, iter_time: 0.383s, data_time: 0.136s, total_loss: 3.3, iou_loss: 1.3, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.4, lr: 1.822e-04, size: 512, ETA: 0:07:04
2021-08-15 21:56:04.585 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:56:10.799 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:56:10.809 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:56:10.818 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 21:56:10.819 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:56:10.819 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:56:10.856 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.30 ms, Average NMS time: 1.09 ms, Average inference time: 7.39 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:56:10.856 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:56:11.022 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch3
2021-08-15 21:56:11.023 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:56:11.023 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:56:16.385 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 10/88, mem: 3881Mb, iter_time: 0.536s, data_time: 0.226s, total_loss: 7.6, iou_loss: 2.2, l1_loss: 1.1, conf_loss: 3.6, cls_loss: 0.7, lr: 2.234e-04, size: 800, ETA: 0:06:44
2021-08-15 21:56:21.538 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 20/88, mem: 3881Mb, iter_time: 0.514s, data_time: 0.203s, total_loss: 5.3, iou_loss: 2.3, l1_loss: 1.0, conf_loss: 1.4, cls_loss: 0.6, lr: 2.480e-04, size: 576, ETA: 0:06:36
2021-08-15 21:56:26.631 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 30/88, mem: 3881Mb, iter_time: 0.509s, data_time: 0.218s, total_loss: 6.6, iou_loss: 2.5, l1_loss: 1.5, conf_loss: 1.9, cls_loss: 0.7, lr: 2.740e-04, size: 736, ETA: 0:06:28
2021-08-15 21:56:31.465 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 40/88, mem: 3881Mb, iter_time: 0.483s, data_time: 0.191s, total_loss: 5.9, iou_loss: 2.5, l1_loss: 1.0, conf_loss: 1.7, cls_loss: 0.8, lr: 3.012e-04, size: 544, ETA: 0:06:19
2021-08-15 21:56:35.555 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 50/88, mem: 3881Mb, iter_time: 0.408s, data_time: 0.150s, total_loss: 3.5, iou_loss: 1.5, l1_loss: 0.5, conf_loss: 1.1, cls_loss: 0.5, lr: 3.298e-04, size: 544, ETA: 0:06:09
2021-08-15 21:56:40.253 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 60/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.191s, total_loss: 4.6, iou_loss: 2.1, l1_loss: 1.0, conf_loss: 0.8, cls_loss: 0.7, lr: 3.596e-04, size: 640, ETA: 0:06:01
2021-08-15 21:56:44.927 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 70/88, mem: 3881Mb, iter_time: 0.467s, data_time: 0.189s, total_loss: 3.2, iou_loss: 1.6, l1_loss: 0.6, conf_loss: 0.4, cls_loss: 0.5, lr: 3.907e-04, size: 576, ETA: 0:05:53
2021-08-15 21:56:49.526 | INFO | yolox.core.trainer:after_iter:242 - epoch: 3/10, iter: 80/88, mem: 3881Mb, iter_time: 0.459s, data_time: 0.126s, total_loss: 9.3, iou_loss: 3.6, l1_loss: 2.1, conf_loss: 2.8, cls_loss: 0.8, lr: 4.231e-04, size: 448, ETA: 0:05:45
2021-08-15 21:56:52.664 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:56:58.751 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:56:58.770 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:56:58.779 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 21:56:58.779 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:56:58.780 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:56:58.851 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.29 ms, Average NMS time: 1.10 ms, Average inference time: 7.39 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:56:58.852 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:56:59.009 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch4
2021-08-15 21:56:59.010 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:56:59.010 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:57:03.834 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 10/88, mem: 3881Mb, iter_time: 0.482s, data_time: 0.194s, total_loss: 3.5, iou_loss: 1.5, l1_loss: 0.6, conf_loss: 0.9, cls_loss: 0.5, lr: 4.847e-04, size: 640, ETA: 0:05:30
2021-08-15 21:57:08.106 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 20/88, mem: 3881Mb, iter_time: 0.427s, data_time: 0.159s, total_loss: 11.3, iou_loss: 4.4, l1_loss: 3.9, conf_loss: 2.2, cls_loss: 0.8, lr: 5.208e-04, size: 448, ETA: 0:05:22
2021-08-15 21:57:12.441 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 30/88, mem: 3881Mb, iter_time: 0.433s, data_time: 0.108s, total_loss: 5.2, iou_loss: 2.3, l1_loss: 0.9, conf_loss: 1.5, cls_loss: 0.6, lr: 5.581e-04, size: 480, ETA: 0:05:15
2021-08-15 21:57:16.038 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 40/88, mem: 3881Mb, iter_time: 0.359s, data_time: 0.125s, total_loss: 4.3, iou_loss: 2.0, l1_loss: 0.8, conf_loss: 0.8, cls_loss: 0.7, lr: 5.967e-04, size: 544, ETA: 0:05:06
2021-08-15 21:57:19.877 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 50/88, mem: 3881Mb, iter_time: 0.384s, data_time: 0.136s, total_loss: 2.7, iou_loss: 1.3, l1_loss: 0.4, conf_loss: 0.6, cls_loss: 0.4, lr: 6.366e-04, size: 512, ETA: 0:04:58
2021-08-15 21:57:24.603 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 60/88, mem: 3881Mb, iter_time: 0.472s, data_time: 0.196s, total_loss: 11.9, iou_loss: 3.5, l1_loss: 2.2, conf_loss: 5.3, cls_loss: 0.9, lr: 6.778e-04, size: 800, ETA: 0:04:52
2021-08-15 21:57:30.386 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 70/88, mem: 3881Mb, iter_time: 0.578s, data_time: 0.243s, total_loss: 7.8, iou_loss: 2.7, l1_loss: 1.4, conf_loss: 3.1, cls_loss: 0.7, lr: 7.203e-04, size: 576, ETA: 0:04:47
2021-08-15 21:57:34.968 | INFO | yolox.core.trainer:after_iter:242 - epoch: 4/10, iter: 80/88, mem: 3881Mb, iter_time: 0.457s, data_time: 0.187s, total_loss: 5.8, iou_loss: 2.3, l1_loss: 1.2, conf_loss: 1.8, cls_loss: 0.6, lr: 7.640e-04, size: 704, ETA: 0:04:41
2021-08-15 21:57:38.888 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:57:45.180 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:57:45.223 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:57:45.241 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.02s)
2021-08-15 21:57:45.241 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:57:45.242 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:57:45.331 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.29 ms, Average NMS time: 1.14 ms, Average inference time: 7.43 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:57:45.332 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch5
2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:57:45.498 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:57:50.643 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 10/88, mem: 3881Mb, iter_time: 0.513s, data_time: 0.117s, total_loss: 12.8, iou_loss: 3.9, l1_loss: 2.5, conf_loss: 5.6, cls_loss: 0.8, lr: 8.461e-04, size: 608, ETA: 0:04:31
2021-08-15 21:57:58.209 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 20/88, mem: 3881Mb, iter_time: 0.756s, data_time: 0.216s, total_loss: 16.1, iou_loss: 4.5, l1_loss: 4.9, conf_loss: 5.5, cls_loss: 1.2, lr: 8.935e-04, size: 832, ETA: 0:04:29
2021-08-15 21:58:04.978 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 30/88, mem: 3881Mb, iter_time: 0.676s, data_time: 0.296s, total_loss: 20.1, iou_loss: 4.8, l1_loss: 5.6, conf_loss: 8.5, cls_loss: 1.2, lr: 9.422e-04, size: 448, ETA: 0:04:25
2021-08-15 21:58:08.970 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 40/88, mem: 3881Mb, iter_time: 0.398s, data_time: 0.132s, total_loss: 8.5, iou_loss: 3.6, l1_loss: 2.0, conf_loss: 2.1, cls_loss: 0.8, lr: 9.921e-04, size: 544, ETA: 0:04:18
2021-08-15 21:58:13.747 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 50/88, mem: 3881Mb, iter_time: 0.477s, data_time: 0.198s, total_loss: 18.3, iou_loss: 4.0, l1_loss: 2.4, conf_loss: 10.6, cls_loss: 1.3, lr: 1.043e-03, size: 832, ETA: 0:04:12
2021-08-15 21:58:20.429 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 60/88, mem: 3881Mb, iter_time: 0.667s, data_time: 0.292s, total_loss: 11.5, iou_loss: 4.4, l1_loss: 2.9, conf_loss: 3.1, cls_loss: 1.1, lr: 1.096e-03, size: 544, ETA: 0:04:09
2021-08-15 21:58:24.532 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 70/88, mem: 3881Mb, iter_time: 0.410s, data_time: 0.155s, total_loss: 7.2, iou_loss: 3.2, l1_loss: 1.0, conf_loss: 2.1, cls_loss: 0.7, lr: 1.150e-03, size: 608, ETA: 0:04:02
2021-08-15 21:58:28.869 | INFO | yolox.core.trainer:after_iter:242 - epoch: 5/10, iter: 80/88, mem: 3881Mb, iter_time: 0.433s, data_time: 0.164s, total_loss: 11.0, iou_loss: 4.2, l1_loss: 1.8, conf_loss: 4.1, cls_loss: 1.0, lr: 1.205e-03, size: 480, ETA: 0:03:56
2021-08-15 21:58:31.620 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:58:38.010 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:58:38.093 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:58:38.158 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.06s)
2021-08-15 21:58:38.158 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:58:38.160 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:58:38.224 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.54 ms, Average NMS time: 1.14 ms, Average inference time: 7.68 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:58:38.225 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:58:38.376 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch6
2021-08-15 21:58:38.376 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:58:38.377 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:58:44.452 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 10/88, mem: 3881Mb, iter_time: 0.607s, data_time: 0.277s, total_loss: 10.6, iou_loss: 4.4, l1_loss: 2.5, conf_loss: 3.0, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:46
2021-08-15 21:58:47.853 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 20/88, mem: 3881Mb, iter_time: 0.340s, data_time: 0.101s, total_loss: 5.3, iou_loss: 2.6, l1_loss: 0.6, conf_loss: 1.4, cls_loss: 0.7, lr: 6.250e-05, size: 448, ETA: 0:03:39
2021-08-15 21:58:54.795 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 30/88, mem: 3881Mb, iter_time: 0.693s, data_time: 0.325s, total_loss: 12.1, iou_loss: 4.3, l1_loss: 2.6, conf_loss: 4.5, cls_loss: 0.7, lr: 6.250e-05, size: 832, ETA: 0:03:35
2021-08-15 21:58:58.460 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 40/88, mem: 3881Mb, iter_time: 0.366s, data_time: 0.117s, total_loss: 5.1, iou_loss: 2.0, l1_loss: 0.4, conf_loss: 2.1, cls_loss: 0.6, lr: 6.250e-05, size: 480, ETA: 0:03:28
2021-08-15 21:59:04.487 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 50/88, mem: 3881Mb, iter_time: 0.602s, data_time: 0.278s, total_loss: 9.1, iou_loss: 3.9, l1_loss: 1.8, conf_loss: 2.7, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:24
2021-08-15 21:59:10.483 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 60/88, mem: 3881Mb, iter_time: 0.599s, data_time: 0.269s, total_loss: 8.2, iou_loss: 3.2, l1_loss: 1.3, conf_loss: 3.0, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:03:19
2021-08-15 21:59:15.368 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 70/88, mem: 3881Mb, iter_time: 0.488s, data_time: 0.196s, total_loss: 4.9, iou_loss: 2.3, l1_loss: 0.6, conf_loss: 1.4, cls_loss: 0.6, lr: 6.250e-05, size: 640, ETA: 0:03:14
2021-08-15 21:59:21.506 | INFO | yolox.core.trainer:after_iter:242 - epoch: 6/10, iter: 80/88, mem: 3881Mb, iter_time: 0.613s, data_time: 0.283s, total_loss: 5.8, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 2.0, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:03:09
2021-08-15 21:59:26.364 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:59:33.032 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 21:59:33.053 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 21:59:33.080 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.03s)
2021-08-15 21:59:33.080 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 21:59:33.081 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 21:59:33.134 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.32 ms, Average NMS time: 1.17 ms, Average inference time: 7.49 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 21:59:33.134 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 21:59:33.312 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch7
2021-08-15 21:59:33.313 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 21:59:33.313 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 21:59:38.130 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 10/88, mem: 3881Mb, iter_time: 0.481s, data_time: 0.192s, total_loss: 6.9, iou_loss: 3.5, l1_loss: 1.4, conf_loss: 1.3, cls_loss: 0.8, lr: 6.250e-05, size: 576, ETA: 0:03:00
2021-08-15 21:59:43.472 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 20/88, mem: 3881Mb, iter_time: 0.533s, data_time: 0.231s, total_loss: 4.0, iou_loss: 1.7, l1_loss: 0.5, conf_loss: 1.2, cls_loss: 0.6, lr: 6.250e-05, size: 704, ETA: 0:02:54
2021-08-15 21:59:48.087 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 30/88, mem: 3881Mb, iter_time: 0.461s, data_time: 0.181s, total_loss: 4.7, iou_loss: 2.4, l1_loss: 0.7, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 576, ETA: 0:02:49
2021-08-15 21:59:53.363 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 40/88, mem: 3881Mb, iter_time: 0.527s, data_time: 0.228s, total_loss: 5.8, iou_loss: 2.7, l1_loss: 0.9, conf_loss: 1.6, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:02:44
2021-08-15 21:59:58.929 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 50/88, mem: 3881Mb, iter_time: 0.556s, data_time: 0.244s, total_loss: 4.1, iou_loss: 1.7, l1_loss: 0.5, conf_loss: 1.3, cls_loss: 0.5, lr: 6.250e-05, size: 736, ETA: 0:02:38
2021-08-15 22:00:05.210 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 60/88, mem: 3881Mb, iter_time: 0.628s, data_time: 0.278s, total_loss: 3.8, iou_loss: 1.6, l1_loss: 0.5, conf_loss: 1.3, cls_loss: 0.5, lr: 6.250e-05, size: 800, ETA: 0:02:34
2021-08-15 22:00:09.728 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 70/88, mem: 3881Mb, iter_time: 0.451s, data_time: 0.167s, total_loss: 8.5, iou_loss: 3.8, l1_loss: 1.8, conf_loss: 2.0, cls_loss: 0.8, lr: 6.250e-05, size: 544, ETA: 0:02:28
2021-08-15 22:00:14.975 | INFO | yolox.core.trainer:after_iter:242 - epoch: 7/10, iter: 80/88, mem: 3881Mb, iter_time: 0.524s, data_time: 0.225s, total_loss: 3.0, iou_loss: 1.1, l1_loss: 0.3, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 736, ETA: 0:02:23
2021-08-15 22:00:19.952 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:00:25.995 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 22:00:26.010 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 22:00:26.018 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 22:00:26.018 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 22:00:26.019 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 22:00:26.058 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.28 ms, Average NMS time: 1.08 ms, Average inference time: 7.36 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 22:00:26.058 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:00:26.221 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch8
2021-08-15 22:00:26.221 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 22:00:26.222 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 22:00:31.045 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 10/88, mem: 3881Mb, iter_time: 0.482s, data_time: 0.183s, total_loss: 10.0, iou_loss: 3.8, l1_loss: 2.1, conf_loss: 3.2, cls_loss: 0.9, lr: 6.250e-05, size: 512, ETA: 0:02:13
2021-08-15 22:00:35.180 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 20/88, mem: 3881Mb, iter_time: 0.413s, data_time: 0.155s, total_loss: 5.6, iou_loss: 2.6, l1_loss: 1.0, conf_loss: 1.4, cls_loss: 0.7, lr: 6.250e-05, size: 640, ETA: 0:02:08
2021-08-15 22:00:39.925 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 30/88, mem: 3881Mb, iter_time: 0.474s, data_time: 0.191s, total_loss: 3.9, iou_loss: 1.8, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:02:02
2021-08-15 22:00:44.020 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 40/88, mem: 3881Mb, iter_time: 0.409s, data_time: 0.150s, total_loss: 6.4, iou_loss: 3.3, l1_loss: 1.2, conf_loss: 1.1, cls_loss: 0.8, lr: 6.250e-05, size: 512, ETA: 0:01:57
2021-08-15 22:00:48.270 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 50/88, mem: 3881Mb, iter_time: 0.424s, data_time: 0.167s, total_loss: 4.1, iou_loss: 2.0, l1_loss: 0.6, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:01:51
2021-08-15 22:00:52.262 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 60/88, mem: 3881Mb, iter_time: 0.398s, data_time: 0.140s, total_loss: 8.9, iou_loss: 3.9, l1_loss: 1.8, conf_loss: 2.4, cls_loss: 0.9, lr: 6.250e-05, size: 448, ETA: 0:01:45
2021-08-15 22:00:57.304 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 70/88, mem: 3881Mb, iter_time: 0.504s, data_time: 0.216s, total_loss: 5.0, iou_loss: 2.3, l1_loss: 0.8, conf_loss: 1.3, cls_loss: 0.7, lr: 6.250e-05, size: 768, ETA: 0:01:40
2021-08-15 22:01:03.148 | INFO | yolox.core.trainer:after_iter:242 - epoch: 8/10, iter: 80/88, mem: 3881Mb, iter_time: 0.584s, data_time: 0.259s, total_loss: 2.8, iou_loss: 1.1, l1_loss: 0.3, conf_loss: 0.9, cls_loss: 0.5, lr: 6.250e-05, size: 736, ETA: 0:01:35
2021-08-15 22:01:07.368 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:01:13.748 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 22:01:13.761 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 22:01:13.771 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 22:01:13.771 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 22:01:13.772 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 22:01:13.809 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.27 ms, Average NMS time: 1.13 ms, Average inference time: 7.40 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 22:01:13.810 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch9
2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 22:01:13.969 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 22:01:19.724 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 10/88, mem: 3881Mb, iter_time: 0.575s, data_time: 0.261s, total_loss: 5.1, iou_loss: 2.2, l1_loss: 0.7, conf_loss: 1.5, cls_loss: 0.6, lr: 6.250e-05, size: 768, ETA: 0:01:26
2021-08-15 22:01:25.460 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 20/88, mem: 3881Mb, iter_time: 0.573s, data_time: 0.249s, total_loss: 5.0, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.7, lr: 6.250e-05, size: 640, ETA: 0:01:21
2021-08-15 22:01:30.151 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 30/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.185s, total_loss: 4.9, iou_loss: 2.4, l1_loss: 0.7, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 544, ETA: 0:01:16
2021-08-15 22:01:33.860 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 40/88, mem: 3881Mb, iter_time: 0.370s, data_time: 0.127s, total_loss: 5.9, iou_loss: 2.6, l1_loss: 0.7, conf_loss: 2.0, cls_loss: 0.6, lr: 6.250e-05, size: 480, ETA: 0:01:10
2021-08-15 22:01:38.131 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 50/88, mem: 3881Mb, iter_time: 0.427s, data_time: 0.167s, total_loss: 8.6, iou_loss: 3.4, l1_loss: 1.6, conf_loss: 2.9, cls_loss: 0.8, lr: 6.250e-05, size: 768, ETA: 0:01:05
2021-08-15 22:01:43.483 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 60/88, mem: 3881Mb, iter_time: 0.534s, data_time: 0.224s, total_loss: 4.4, iou_loss: 2.3, l1_loss: 0.5, conf_loss: 0.9, cls_loss: 0.6, lr: 6.250e-05, size: 576, ETA: 0:01:00
2021-08-15 22:01:48.007 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 70/88, mem: 3881Mb, iter_time: 0.452s, data_time: 0.178s, total_loss: 3.8, iou_loss: 1.8, l1_loss: 0.5, conf_loss: 1.0, cls_loss: 0.6, lr: 6.250e-05, size: 672, ETA: 0:00:54
2021-08-15 22:01:52.385 | INFO | yolox.core.trainer:after_iter:242 - epoch: 9/10, iter: 80/88, mem: 3881Mb, iter_time: 0.437s, data_time: 0.165s, total_loss: 8.9, iou_loss: 3.7, l1_loss: 1.6, conf_loss: 2.7, cls_loss: 1.0, lr: 6.250e-05, size: 448, ETA: 0:00:49
2021-08-15 22:01:55.374 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:02:01.640 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 22:02:01.653 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 22:02:01.660 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 22:02:01.661 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 22:02:01.661 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 22:02:01.701 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.29 ms, Average NMS time: 1.07 ms, Average inference time: 7.36 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 22:02:01.701 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:02:01.865 | INFO | yolox.core.trainer:before_epoch:192 - ---> start train epoch10
2021-08-15 22:02:01.866 | INFO | yolox.core.trainer:before_epoch:195 - --->No mosaic aug now!
2021-08-15 22:02:01.866 | INFO | yolox.core.trainer:before_epoch:197 - --->Add additional L1 loss now!
2021-08-15 22:02:06.901 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 10/88, mem: 3881Mb, iter_time: 0.503s, data_time: 0.206s, total_loss: 3.8, iou_loss: 1.9, l1_loss: 0.5, conf_loss: 0.8, cls_loss: 0.5, lr: 6.250e-05, size: 608, ETA: 0:00:40
2021-08-15 22:02:11.762 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 20/88, mem: 3881Mb, iter_time: 0.486s, data_time: 0.204s, total_loss: 6.7, iou_loss: 3.0, l1_loss: 1.2, conf_loss: 1.7, cls_loss: 0.8, lr: 6.250e-05, size: 768, ETA: 0:00:34
2021-08-15 22:02:17.996 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 30/88, mem: 3881Mb, iter_time: 0.623s, data_time: 0.285s, total_loss: 7.2, iou_loss: 3.4, l1_loss: 1.5, conf_loss: 1.5, cls_loss: 0.8, lr: 6.250e-05, size: 832, ETA: 0:00:29
2021-08-15 22:02:24.433 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 40/88, mem: 3881Mb, iter_time: 0.643s, data_time: 0.276s, total_loss: 6.7, iou_loss: 3.4, l1_loss: 1.4, conf_loss: 1.2, cls_loss: 0.7, lr: 6.250e-05, size: 576, ETA: 0:00:24
2021-08-15 22:02:28.987 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 50/88, mem: 3881Mb, iter_time: 0.455s, data_time: 0.186s, total_loss: 4.9, iou_loss: 2.3, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 832, ETA: 0:00:19
2021-08-15 22:02:35.567 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 60/88, mem: 3881Mb, iter_time: 0.658s, data_time: 0.286s, total_loss: 4.9, iou_loss: 2.4, l1_loss: 0.8, conf_loss: 1.1, cls_loss: 0.6, lr: 6.250e-05, size: 640, ETA: 0:00:14
2021-08-15 22:02:40.259 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 70/88, mem: 3881Mb, iter_time: 0.469s, data_time: 0.189s, total_loss: 3.3, iou_loss: 1.5, l1_loss: 0.4, conf_loss: 0.9, cls_loss: 0.5, lr: 6.250e-05, size: 640, ETA: 0:00:09
2021-08-15 22:02:45.042 | INFO | yolox.core.trainer:after_iter:242 - epoch: 10/10, iter: 80/88, mem: 3881Mb, iter_time: 0.478s, data_time: 0.196s, total_loss: 3.7, iou_loss: 1.9, l1_loss: 0.6, conf_loss: 0.6, cls_loss: 0.5, lr: 6.250e-05, size: 704, ETA: 0:00:04
2021-08-15 22:02:49.305 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:02:55.436 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:171 - Evaluate in main process...
2021-08-15 22:02:55.449 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - Loading and preparing results...
2021-08-15 22:02:55.457 | INFO | yolox.evaluators.coco_evaluator:evaluate_prediction:204 - DONE (t=0.01s)
2021-08-15 22:02:55.457 | INFO | pycocotools.coco:loadRes:365 - creating index...
2021-08-15 22:02:55.458 | INFO | pycocotools.coco:loadRes:365 - index created!
2021-08-15 22:02:55.498 | INFO | yolox.core.trainer:evaluate_and_save_model:315 -
Average forward time: 6.26 ms, Average NMS time: 1.10 ms, Average inference time: 7.36 ms
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
2021-08-15 22:02:55.499 | INFO | yolox.core.trainer:save_ckpt:324 - Save weights to ./YOLOX_outputs\606
2021-08-15 22:02:55.667 | INFO | yolox.core.trainer:after_train:187 - Training of experiment is done and the best AP is 0.00
As you can see I only train for 10 epochs just for testing but the mAP is 0.00 and I get the same result even when I train for 300 epochs,and this is my own Exp file:
`#!/usr/bin/env python3
-- coding:utf-8 --
Copyright (c) Megvii, Inc. and its affiliates.
import os
from yolox.exp import Exp as MyExp
class Exp(MyExp):
def init(self):
super(Exp, self).init()
self.depth = 0.33
self.width = 0.50
self.exp_name = os.path.split(os.path.realpath(file))[1].split(".")[0]
# Define yourself dataset path
self.data_dir = "datasets/coco128"
self.train_ann = "instances_train2017.json"
self.val_ann = "instances_val2017.json"
self.num_classes = 8
self.max_epoch = 10
self.data_num_workers = 0
self.eval_interval = 1`
and the coco_classes.py:
`#!/usr/bin/env python3
-- coding:utf-8 --
Copyright (c) Megvii, Inc. and its affiliates.
COCO_CLASSES = (
"blue1",
"red1",
"blue2",
"red2",
"blue3",
"red3",
"blue4",
"red4",
)`
So what's wrong with my code?I have struggled into this a whole day,Honestly,I'm about to be crazy now!!!