The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Overview

Habitat-Matterport 3D Dataset (HM3D)

The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000 high-resolution 3D scans (or digital twins) of building-scale residential, commercial, and civic spaces generated from real-world environments.

HM3D is free and available here for academic, non-commercial research. Researchers can use it with FAIR’s Habitat simulator to train embodied agents, such as home robots and AI assistants, at scale.

example

This repository contains the code and instructions to reproduce experiments from our NeurIPS 2021 paper. If you use the HM3D dataset or the experimental code in your research, please cite the HM3D paper.

@inproceedings{ramakrishnan2021hm3d,
  title={Habitat-Matterport 3D Dataset ({HM}3D): 1000 Large-scale 3D Environments for Embodied {AI}},
  author={Santhosh Kumar Ramakrishnan and Aaron Gokaslan and Erik Wijmans and Oleksandr Maksymets and Alexander Clegg and John M Turner and Eric Undersander and Wojciech Galuba and Andrew Westbury and Angel X Chang and Manolis Savva and Yili Zhao and Dhruv Batra},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
  year={2021},
  url={https://openreview.net/forum?id=-v4OuqNs5P}
}

Please check out our website for details on downloading and visualizing the HM3D dataset.

Installation instructions

We provide a common set of instructions to setup the environment to run all our experiments.

  1. Clone the HM3D github repository and add it to PYTHONPATH.

    git clone https://github.com/facebookresearch/habitat-matterport3d-dataset.git
    cd habitat-matterport3d-dataset
    export PYTHONPATH=$PYTHONPATH:$PWD
    
  2. Create conda environment and activate it.

    conda create -n hm3d python=3.8.3
    conda activate hm3d
    
  3. Install habitat-sim using conda.

    conda install habitat-sim headless -c conda-forge -c aihabitat
    

    See habitat-sim's installation instructions for more details.

  4. Install trimesh with soft dependencies.

    pip install "trimesh[easy]==3.9.1"
    
  5. Install remaining requirements from pip.

    pip install -r requirements.txt
    

Downloading datasets

In our paper, we benchmarked HM3D against prior indoor scene datasets such as Gibson, MP3D, RoboThor, Replica, and ScanNet.

  • Download each dataset based on these instructions from habitat-sim. In the case of RoboThor, convert the raw scan assets to GLB using assimp.

    assimp export  
         
    
         
  • Once the datasets are download and processed, create environment variables pointing to the corresponding scene paths.

    export GIBSON_ROOT=
         
          
    export MP3D_ROOT=
          
           
    export ROBOTHOR_ROOT=
           
            
    export HM3D_ROOT=
            
             
    export REPLICA_ROOT=
             
               export SCANNET_ROOT=
               
              
             
            
           
          
         

Running experiments

We provide the code for reproducing the results from our paper in different directories.

  • scale_comparison contains the code for comparing the scale of HM3D with other datasets (Tab. 1 in the paper).
  • quality_comparison contains the code for comparing the reconstruction completeness and visual fidelity of HM3D with other datasets (Fig. 4 and Tab. 5 in the paper).
  • pointnav_comparison contains the configs and instructions to train and evaluate PointNav agents on HM3D and other datasets (Tab. 2 and Fig. 7 in the paper).

We further provide README files within each directory with instructions for running the corresponding experiments.

Acknowledgements

We thank all the volunteers who contributed to the dataset curation effort: Harsh Agrawal, Sashank Gondala, Rishabh Jain, Shawn Jiang, Yash Kant, Noah Maestre, Yongsen Mao, Abhinav Moudgil, Sonia Raychaudhuri, Ayush Shrivastava, Andrew Szot, Joanne Truong, Madhawa Vidanapathirana, Joel Ye. We thank our collaborators at Matterport for their contributions to the dataset: Conway Chen, Victor Schwartz, Nicole Rogers, Sachal Dhillon, Raghu Munaswamy, Mark Anderson.

License

The code in this repository is MIT licensed. See the LICENSE file for details. The trained models are considered data derived from the correspondent scene datasets.

Comments
  • Floorplan annotations

    Floorplan annotations

    Thanks for your amazing work! I wonder is there 2D floorplan annotation for the scene (Or do you have any plans to release this kind of annotation in the near future)?

    Best, Yuanwen

    opened by ywyue 2
  • Using the dataset in NVIDIA isaac

    Using the dataset in NVIDIA isaac

    Hi, thanks for providing this dataset for research. I was wondering if anyone managed to import this dataset into NVIDIA isaac sim. The glb files are directly importable into isaac, but I am not really sure if it's amenable to spawn robots into it/generate navigation meshes, get semantic camera outputs etc. Any pointers would be really helpful!

    opened by sai-prasanna 1
  • Testing and debugging quality comparison

    Testing and debugging quality comparison

    • Re-ran the complete pipeline for scene quality comparison
    • Bug fixes
    • Updated code to accommodate new HM3D dataset structure
    • Added instructions for extracting MP3D panoramas
    • Other misc. changes
    CLA Signed 
    opened by srama2512 0
  • Add pre-commit CI and fix lots of potential bugs and formatting issues

    Add pre-commit CI and fix lots of potential bugs and formatting issues

    Added a bunch of pre-commit hooks and the pre-commit config / hooks.

    • Fixed inconsistent tabbing, spaces, etc.
    • Fixed bad file permissions (yamls being executable)
    • Applied isort, black, and other linters.
    • Fixed a bunch of potential shell issues found with shellcheck (mostly handling paths with spaces).
    • Fixed bugs found by flake8 TODO in a future PR, setup mypy for proper type testing
    CLA Signed 
    opened by Skylion007 0
  • Adding Code of Conduct file

    Adding Code of Conduct file

    This is pull request was created automatically because we noticed your project was missing a Code of Conduct file.

    Code of Conduct files facilitate respectful and constructive communities by establishing expected behaviors for project contributors.

    This PR was crafted with love by Facebook's Open Source Team.

    CLA Signed 
    opened by facebook-github-bot 0
  • Adding Contributing file

    Adding Contributing file

    This is pull request was created automatically because we noticed your project was missing a Contributing file.

    CONTRIBUTING files explain how a developer can contribute to the project - which you should actively encourage.

    This PR was crafted with love by Facebook's Open Source Team.

    CLA Signed 
    opened by facebook-github-bot 0
  • Topdown photo

    Topdown photo

    Hi There,

    Does the dataset have topdown view photo for each floor in all environments?

    Or is that a way to use the Habitat simulator to produce the top down photos?

    Thanks!

    opened by YicongHong 4
Owner
Meta Research
Meta Research
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 7, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 1, 2023
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 4, 2023
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 6, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 3, 2023
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 4, 2023
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 3, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

null 9 Dec 9, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

null 51 Nov 29, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 7, 2023
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 4, 2023
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web browsers, and performing many other daily tasks like playing music with the help of a single voice command.

Harsh Gupta 1 Nov 9, 2021