fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

Overview

fastNLP

Build Status codecov Pypi Hex.pm Documentation Status

fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。

fastNLP具有如下的特性:

  • 统一的Tabular式数据容器,简化数据预处理过程;
  • 内置多种数据集的Loader和Pipe,省去预处理代码;
  • 各种方便的NLP工具,例如Embedding加载(包括ELMo和BERT)、中间数据cache等;
  • 部分数据集与预训练模型的自动下载;
  • 提供多种神经网络组件以及复现模型(涵盖中文分词、命名实体识别、句法分析、文本分类、文本匹配、指代消解、摘要等任务);
  • Trainer提供多种内置Callback函数,方便实验记录、异常捕获等。

安装指南

fastNLP 依赖以下包:

  • numpy>=1.14.2
  • torch>=1.0.0
  • tqdm>=4.28.1
  • nltk>=3.4.1
  • requests
  • spacy
  • prettytable>=0.7.2

其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 PyTorch 官网 。 在依赖包安装完成后,您可以在命令行执行如下指令完成安装

pip install fastNLP
python -m spacy download en

fastNLP教程

中文文档教程

快速入门

详细使用教程

扩展教程

内置组件

大部分用于的 NLP 任务神经网络都可以看做由词嵌入(embeddings)和两种模块:编码器(encoder)、解码器(decoder)组成。

以文本分类任务为例,下图展示了一个BiLSTM+Attention实现文本分类器的模型流程图:

fastNLP 在 embeddings 模块中内置了几种不同的embedding:静态embedding(GloVe、word2vec)、上下文相关embedding (ELMo、BERT)、字符embedding(基于CNN或者LSTM的CharEmbedding)

与此同时,fastNLP 在 modules 模块中内置了两种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 两种模块的功能和常见组件如下:

类型 功能 例子
encoder 将输入编码为具有具有表示能力的向量 Embedding, RNN, CNN, Transformer, ...
decoder 将具有某种表示意义的向量解码为需要的输出形式 MLP, CRF, ...

项目结构

fastNLP的大致工作流程如上图所示,而项目结构如下:

fastNLP 开源的自然语言处理库
fastNLP.core 实现了核心功能,包括数据处理组件、训练器、测试器等
fastNLP.models 实现了一些完整的神经网络模型
fastNLP.modules 实现了用于搭建神经网络模型的诸多组件
fastNLP.embeddings 实现了将序列index转为向量序列的功能,包括读取预训练embedding等
fastNLP.io 实现了读写功能,包括数据读入与预处理,模型读写,数据与模型自动下载等

In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!

Comments
  • star-transformer何时可以放出完整代码?实验完全无法重现,SST-5数据集上相差6个点哦

    star-transformer何时可以放出完整代码?实验完全无法重现,SST-5数据集上相差6个点哦

    Describe the bug A clear and concise description of what the bug is. 清晰而简要地描述bug

    To Reproduce 使用你们的star-transformer代码,然后用allennlp做训练(glove 42B 词向量), 最后结果见如图,与论文中报告的结果相差6个点。

    请求解释!以及完整版的代码,就是可以完全复现结果的完整版。

    Additional context Add any other context about the problem here. 备注 image

    opened by michael-wzhu 10
  • RuntimeError: CUDA error: device-side assert triggered

    RuntimeError: CUDA error: device-side assert triggered

    Describe the bug 用Predictor方法去加载训练好的模型,在预测时会出现第一张图里面的错误,这个bug被我fixed了。详细请见我在下文上传的项目链接。 出现原因:经过debug分析,发现此bug是由于预测新数据时出现了训练时候没有的新字符,而在bert_embedding.py 脚本里面读取的是训练时候的Vocab维度,并把它初始化成1的vocab向量做mask预测,而这导致了此向量的维度小于实际维度,实际维度=训练时候的Vocab维度+新字符的维度。 Bug结果请看图一,Bug位置及修复请看图二。 image

    image

    To Reproduce 1.把test.txt、dev.txt、train.txt移到data目录下。data目录为自己创建的目录 2. 调用fastNLP_trainer.py脚本 3. 调用fastNLP_predictor.py脚本 4. See error 重现这个bug的步骤

    项目链接:https://github.com/Chris-cbc/fastNLP_Bug_Report_And_Fix.git

    Expected behavior image 上图也是bug修复后出现的结果

    Desktop

    • OS: windows10
    • Python Version: 3.6

    Additional context 请项目主确认后 发邮件并at我github账户一下,让我知道这个bug最终是怎样被修复的 备注

    opened by Chris-cbc 9
  • fastNLP安装完成之后导入有错

    fastNLP安装完成之后导入有错

    Python 3.5环境下安装fastNLP,显示可以安装成功,但是import fastNLP时会出现 File "D:\anaconda\lib\site-packages\fastNLP\core\instance.py", line 40 f" type={(str(type(self.fields[field_name]))).split(s)[1]}" for field_name in self.fields) + "}" ^ SyntaxError: invalid syntax Python3.6和Python3.7也不行,都是安装完成之后,import时就会报错

    opened by lovelyvivi 8
  • a new function for argparse

    a new function for argparse

    we should provide a function for arg parse so that we can support "python fastnlp.py --arg1 value1 --arg2 value2" and so on.

    in this way, what argument should we have?

    enhancement 
    opened by xuyige 8
  • 在运行matching_esim.py时报错RuntimeError: CUDA error: device-side assert triggered

    在运行matching_esim.py时报错RuntimeError: CUDA error: device-side assert triggered

    使用cpu训练没有问题,刚开始以为是pytorch版本问题,后来尝试了1.2、1.4、1.7,其中1.2和1.4都会报错,都是训练到第二个epoch在test时报错RuntimeError: CUDA error: device-side assert triggered。1.7会提示由于pytorch版本问题,对超出词表的词要使用long型。 同样的问题在之前的一个脚本中也出现了。我在4月份使用bertMatching模型训练跑通了,但是现在再做的时候也会报这个错误。 感谢项目组。

    opened by jwc19890114 7
  • Default value for train args.

    Default value for train args.

    https://github.com/fastnlp/fastNLP/blob/8a87807274735046a48be8eb4b1ca10801875039/fastNLP/core/trainer.py#L42-L45

    Should we set some default value for train_args? Otherwise we will pass all these args every time, which is very redundant.

    opened by keezen 7
  • 关于Trainer基本使用部分实例的报错

    关于Trainer基本使用部分实例的报错

    在学习Trainer部分的时候,运行了这一节最开始部分的代码 但是原始的实例代码会报错

    TypeError: can't convert np.ndarray of type numpy.int32. The only supported types are: float64, float32, float16, int64, int32, int16, int8, uint8, and bool.
    

    我尝试在数据生成部分直接使用torch生成tensor

    def generate_psedo_dataset(num_samples):
        data=torch.randint(2,size=(num_samples,10))
        print(data.shape)
        list=[]
        for n in range(num_samples):
            label=torch.sum(data[n])%2
            list.append(label)
        list=torch.stack(list)
        dataset = DataSet({'x':data, 'label': list})
        dataset.set_input('x')
        dataset.set_target('label')
        return dataset
    tr_dataset=generate_psedo_dataset(1000)
    dev_dataset=generate_psedo_dataset(100)
    

    但是在训练中会报如下错误

    TypeError: issubclass() arg 1 must be a class
    

    是不是我的数据生成写错了。。。 gitbook部分的实例代码应该如何调整呢? torch:1.2.0+cu92 FastNLP:0.5.0

    opened by jwc19890114 6
  • 以BertEmbedding为基础进行上层应用训练,训练中更新bert参数的问题。

    以BertEmbedding为基础进行上层应用训练,训练中更新bert参数的问题。

    首先感谢你们的代码!

    我现在想直接利用from fastNLP.embeddings import BertEmbedding来读入BertEmbedding模型,然后根据你们的教程搭建一个vocab,初始化self.embed = BertEmbedding(vocab, model_dir_or_name="en-base-uncased"),进而输入一个句子的中每个词在vocab中对应的index得到对应的embedding向量,然后在此基础上进行后续的语言应用的建模。

    简单来讲,使用方式是否如同pytorch提供的nn.Embedding一样,有什么需要注意的吗?因为我利用上述方式简单搭建了一个baseline,但是并不能很好的收敛。

    还望不吝赐教,谢谢!

    opened by Reply1999 6
  • A question in crf.py

    A question in crf.py

    您好,我发现在decoder的crf.py的代码中,第263行是这样写的 score = trans_score + emit_score[:seq_len - 1, :] 其中的trans_score大小为[seq_len-1, batch_size],trans_score[0][0]代表第0个句子的第0个字符到第1个字符的转移得分; 而emit_score[:seq_len - 1, :]的大小为[seq_len-1, batch_size],emit_score[0, 0]代表第0个句子第0个字符的发射得分; 但是第0个句子第0个字符的转移得分不应该是start字符到第0个字符的score么?请问这里为什么不写成 score = trans_score + emit_score[1:, :]呢 感谢您的解答~

    opened by tyistyler 5
  • [fix]修复fitlocallback 在DistTrainer的使用中无法添加dev_data的问题

    [fix]修复fitlocallback 在DistTrainer的使用中无法添加dev_data的问题

    Description:fitlocallback 在DistTrainer的使用中无法添加dev_data,主要原因在于fitlogcallback验证self.trainer.dev_data时,也即DIstanbulTrainer没有dev_data属性导致调用失败报错

    Main reason: 修复fitlocallback 在DistTrainer的使用中无法添加dev_data的问题

    Checklist 检查下面各项是否完成

    Please feel free to remove inapplicable items for your PR.

    • [x] The PR title starts with [$CATEGORY] (例如[bugfix]修复bug,[new]添加新功能,[test]修改测试,[rm]删除旧代码)
    • [x] Changes are complete (i.e. I finished coding on this PR) 修改完成才提PR
    • [x] All changes have test coverage 修改的部分顺利通过测试。对于fastnlp/fastnlp/的修改,测试代码必须提供在fastnlp/test/
    • [x] Code is well-documented 注释写好,API文档会从注释中抽取
    • [x] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 修改导致例子或tutorial有变化,请找核心开发人员

    Changes: 修复fitlocallback 在DistTrainer的使用中无法添加dev_data的问题

    • 并在DIstTrainer中添加了kwargs,test_use_tqdm,dev_data,metrics类变量

    Mention: 找人review你的PR

    @修改过这个文件的人 @核心开发人员

    opened by ROGERDJQ 5
  • improve the compatibility of

    improve the compatibility of "Trainer"

    Description:简要描述这次PR的内容 Delete DEFAULT_CHECK_BATCH_SIZE and make it same with the input batch size.

    Main reason: 做出这次修改的原因 It is unnecessary to use DEFAULT_CHECK_BATCH_SIZE, which may cause some conficts with the initialized model.

    Checklist 检查下面各项是否完成

    Please feel free to remove inapplicable items for your PR.

    • [x] The PR title starts with [$CATEGORY] (例如[bugfix]修复bug,[new]添加新功能,[test]修改测试,[rm]删除旧代码)
    • [x] Changes are complete (i.e. I finished coding on this PR) 修改完成才提PR
    • [x] All changes have test coverage 修改的部分顺利通过测试。对于fastnlp/fastnlp/的修改,测试代码必须提供在fastnlp/test/
    • [x] Code is well-documented 注释写好,API文档会从注释中抽取
    • [x] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 修改导致例子或tutorial有变化,请找核心开发人员

    Changes: 逐项描述修改的内容

    • 去掉 DEFAULT_CHECK_BATCH_SIZE,并将其修改为预先设置的batch_size

    Mention: 找人review你的PR

    @修改过这个文件的人 @核心开发人员

    opened by hendrydong 5
  • [bugfix] 修改requentments.txt中的rich版本,给topk_saver增加参数

    [bugfix] 修改requentments.txt中的rich版本,给topk_saver增加参数

    Description:修改requentments.txt中的rich版本,给topk_saver增加参数。

    Main reason: 升级rich版本以解决剩余时间过长导致的异常。topk_saver中增加参数use_timestamp_path参数,决定是否跳过创建时间戳命名的文件夹的步骤。

    Checklist 检查下面各项是否完成

    Please feel free to remove inapplicable items for your PR.

    • [x] The PR title starts with [$CATEGORY] (例如[bugfix]修复bug,[new]添加新功能,[test]修改测试,[rm]删除旧代码)
    • [x] Changes are complete (i.e. I finished coding on this PR) 修改完成才提PR
    • [x] All changes have test coverage 修改的部分顺利通过测试。对于fastnlp/fastnlp/的修改,测试代码必须提供在fastnlp/test/
    • [x] Code is well-documented 注释写好,API文档会从注释中抽取
    • [x] To the my best knowledge, examples are either not affected by this change, or have been fixed to be compatible with this change 修改导致例子或tutorial有变化,请找核心开发人员

    Changes: 逐项描述修改的内容

    • 将rich版本由11.2.0升级为12.6.0;
    • topk_saver中增加参数use_timestamp_path参数,决定是否跳过创建时间戳命名的文件夹的步骤。
    opened by 00INDEX 0
  • 版本 1.0.1 No module named 'fastNLP.embeddings.embedding'

    版本 1.0.1 No module named 'fastNLP.embeddings.embedding'

    在 fastNLP 版本 1.0.1 中

    from fastNLP.embeddings.embedding import TokenEmbedding
    

    报错:

    ModuleNotFoundError: No module named 'fastNLP.embeddings.embedding'
    
    opened by MrRace 1
  • 文档疑似错误?

    文档疑似错误?

    https://github.com/fastnlp/fastNLP/blob/6f21084dafeeb937e137adcf33a0858dec921f8c/fastNLP/core/drivers/torch_driver/initialize_torch_driver.py#L36-L37 older ?

    opened by iamqiz 0
  • [疑问][建议]话说为什么DataSet不支持List[Dict]的data?建议像huggingface 的Dataset那样支持一下?

    [疑问][建议]话说为什么DataSet不支持List[Dict]的data?建议像huggingface 的Dataset那样支持一下?

    fastNLP不支持

    from fastNLP import DataSet
    ds=[{"name":"aa","age":21},{"name":"bb","age":22},{"name":"cc","age":19}]
    data_set = DataSet(ds)
    

    huggingface 的Dataset支持

    from datasets import Dataset
    ds=[{"name":"aa","age":21},{"name":"bb","age":22},{"name":"cc","age":19}]
    dataset = Dataset.from_list(ds)
    

    希望能支持

    opened by iamqiz 1
Releases(v0.6.0)
Owner
fastNLP
由复旦大学的自然语言处理(NLP)团队发起的国产自然语言处理开源项目
fastNLP
All the code I wrote for Overwatch-related projects that I still own the rights to.

overwatch_shit.zip This is (eventually) going to contain all the software I wrote during my five-year imprisonment stay playing Overwatch. I'll be add

zkxjzmswkwl 2 Dec 31, 2021
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 7, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing ?? ?? ?? We released the 2.0.0 version with TF2 Support. ?? ?? ?? If you

Eliyar Eziz 2.3k Dec 29, 2022
:mag: End-to-End Framework for building natural language search interfaces to data by utilizing Transformers and the State-of-the-Art of NLP. Supporting DPR, Elasticsearch, HuggingFace’s Modelhub and much more!

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 1.4k Feb 18, 2021
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing ?? ?? ?? We released the 2.0.0 version with TF2 Support. ?? ?? ?? If you

Eliyar Eziz 2k Feb 9, 2021
✨Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects.

✨A Python framework to explore, label, and monitor data for NLP projects

Recognai 1.5k Jan 2, 2023
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack ?? Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 3, 2023
An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Fan 137 Oct 26, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 12.3k Dec 31, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

flair 10k Feb 18, 2021
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 2, 2023
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

null 3.2k Dec 30, 2022