The Fuzzy Labs guide to the universe of open source MLOps

Overview

Open Source MLOps

This is the Fuzzy Labs guide to the universe of free and open source MLOps tools.

Contents

What is MLOps anyway?

MLOps (machine learning operations) is a discipline that helps people to train, deploy and run machine learning models successfully in production environments. Because this is a new and rapidly-evolving field, there are a lot of tools out there, and new ones appear all the time. If we've missed any, then please do raise a pull request!

Data version control

Just like code, data grows and evolves over time. Data versioning tools help you to keep track of these changes.

You might wonder why you can't just store data in Git (or equivalent). There are a few reasons this doesn't work, but the main one is size: Git is designed for small text files, and typical datasets used in machine learning are just too big. Some tools, like DVC, store the data externally, but also integrate with Git so that data versions can be linked to code versions.

  • DVC - one of the most popular general-purpose data versioning tools.
  • Delta Lake - data versioning for data warehouses.
  • LakeFS - Transform your object storage into a Git-like repository.
  • Git LFS - while this doesn't specialise in machine learning use-cases, it's another popular way to version datasets.

Experiment tracking

Machine learning involves a lot of experimentation. We end up training a lot of models, most of which are never intended to go into production, but represent progressive steps towards having something production-worthy. Experiment tracking tools are there to help us keep track of each experiment. What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

Model training

Feature stores

Model deployment and serving

Model serving is the process of taking a trained model and presenting it behind a REST API, and this enables other software components to interact with a model. To make deployment of these model servers as simple as possible, it's commonplace to run them inside Docker containers and deploy them to a container orchestration system such as Kubernetes.

Model monitoring

Full stacks

More resources

Here are some more resources for MLOps, both open-source and proprietary.

Comments
  • Data Catalogues

    Data Catalogues

    Just a short snippet on Data Catalogues. Almost started trying to build out a custom one because I didn't know they existed. Therefore feel it's important to make some noise about them.

    Open to feedback, can add more detail once I know if you guys think they fit the MLOps category. Only didn't put them under the Data Governance bin because those that focus on Data Discovery don't have so much to do with it. Happy to shuffle the content over though.

    opened by GeorgePearse 3
  • Add feathr (feature store by Linkedin)

    Add feathr (feature store by Linkedin)

    This PR adds Feathr

    About Feathr:

    Feathr is an open source enterprise-grade, high performance feature store, hosted in incubation in the LF AI & Data Foundation.

    @archena Please let me know if any changes are needed for the description.

    opened by SangamSwadiK 1
  • add new section for Model validation, with trubrics

    add new section for Model validation, with trubrics

    Hello, we have recently launched Trubrics and I'd love to add it to your great list!

    Trubrics helps Data Scientists validate their models, by providing them with a framework to write validations. Validations can be built purely with data science knowledge, or with feedback collected from business users on ML models.

    Thanks :grinning:

    opened by jeffkayne 1
  • Added MLEM and put description for CML

    Added MLEM and put description for CML

    Hello! We have a new MLOPs tool we'd love to add to the awesome-open-mlops!

    You can find the repo here: https://github.com/iterative/mlem Read the blog post: https://iterative.ai/blog/MLEM-release Watch the video: https://youtu.be/7h0fiZNwCnA

    Let me know if you need anything else or would like to collaborate in some way! Best regards...

    opened by mertbozkir 1
  • Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few hopefully interesting repos, all OS focused. I used monitoring for RecList even if (interestingly) is probably in his own category (with CheckList for example): "model testing", or something like that!

    opened by jacopotagliabue 1
  • Update the open source MLOps repo with data annotation

    Update the open source MLOps repo with data annotation

    Picked out the most interesting tools from this repo built by ZenML. Added a new section to our repo for data annotation. Include a link to ZenMLโ€™s repo as well.

    opened by osw282 1
  • chore: Add envd

    chore: Add envd

    I'd like to share envd with the community!

    envd is a machine learning development environment for data science and AI/ML engineering teams.

    ๐Ÿ No Docker, only Python - Focus on writing Python code, we will take care of Docker and development environment setup.

    ๐Ÿ–จ๏ธ Built-in Jupyter/VSCode - First-class support for Jupyter and VSCode remote extension.

    โฑ๏ธ Save time - Better cache management to save your time, keep the focus on the model, instead of dependencies.

    โ˜๏ธ Local & cloud - envd integrates seamlessly with Docker so that you can easily share, version, and publish envd environments with Docker Hub or any other OCI image registries.

    ๐Ÿ” Repeatable builds & reproducible results - You can reproduce the same dev environment on your laptop, public cloud VMs, or Docker containers, without any change in setup.

    Signed-off-by: Ce Gao [email protected]

    opened by gaocegege 1
  • Adds a section for model registries

    Adds a section for model registries

    ๐Ÿ‘‹ Hello!

    This PR adds a new section for model registries and I've added both ML Flow and modelstore to it. Disclosure: I'm the author of the latter.

    When reading through the other sections, I saw that this might overlap slightly with experiment tracking, which is described as:

    What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

    Happy to change this around as you see fit.

    Thank you for considering this contribution ๐Ÿ™

    opened by nlathia 1
  • Adds Hamilton and feature engineering section

    Adds Hamilton and feature engineering section

    Hamilton was created to help wrangle a feature engineering code base. It forces decoupling of feature transform logic from materialization, and results in code that is always unit testable, reusable, and documentation friendly.

    I didn't see an appropriate section to add it, so I created a feature engineering section - putting it in feature stores wouldn't be the right place.

    opened by skrawcz 1
  • Image Analysis Tools

    Image Analysis Tools

    I've synced the forks. I have no idea why my previous data catalogue addition is listed again as a new change? Will correct that if anyone can tell me where I've gone wrong.

    I've hit my limit of GitHub lists so will be making greater use of this repo. Adding in image analysis tools (fiftyone - the dominant player, and dendromap - looks very powerful).

    Will add links, and try to get round to adding descriptions for data catalogues soon

    opened by GeorgePearse 1
  • Deepchecks library

    Deepchecks library

    Deepchecks is open source tool for testing and validating machine learning models and data. The 3 checks supported in different phases of ML pipeline are

    • Data Integrity (between ingestion and preprocessing step)
    • Train-Test Validation (Distribution and Methodology Checks) (between preprocessing and training step)
    • Model Performance Evaluation (evaluation step)
    opened by dudeperf3ct 0
Releases(v0.1.0-alpha)
  • v0.1.0-alpha(Dec 13, 2021)

    Initial release of the Awesome Open Source MLOps list.

    • Data version control
    • Experiment tracking
    • Model training
    • Feature stores
    • Model deployment and serving
    • Model monitoring
    • Full stacks
    Source code(tar.gz)
    Source code(zip)
Owner
Fuzzy Labs
MLOps done right
Fuzzy Labs
โณ Tempo: The MLOps Software Development Kit

Tempo provides a unified interface to multiple MLOps projects that enable data scientists to deploy and productionise machine learning systems.

Seldon 36 Jun 20, 2021
Pragmatic AI Labs 421 Dec 31, 2022
ZenML ๐Ÿ™: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstractions that are catered towards ML workflows.

ZenML 2.6k Jan 8, 2023
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization โ”œโ”€โ”€ LICEN

Ashish Tele 6 Feb 6, 2022
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 9, 2023
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drift detection. It utilizes SageMaker Pipelines that offers machine learning (ML) to orchestrate SageMaker jobs and author reproducible ML pipelines.

AWS Samples 3 Sep 16, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 1, 2023
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!

Louis-Franรงois Bouchard 3.3k Jan 4, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 3, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 2, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

null 23.3k Dec 31, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 8, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 6, 2022
Data Version Control or DVC is an open-source tool for data science and machine learning projects

Continuous Machine Learning project integration with DVC Data Version Control or DVC is an open-source tool for data science and machine learning proj

Azaria Gebremichael 2 Jul 29, 2021
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 1, 2023
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022