ViSER
Installation with conda
conda env create -f viser.yml
conda activate viser-release
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make -j8; cd ../../
Data preparation
Create folders to store intermediate data and training logs
mkdir log; mkdir tmp;
Download pre-processed data (rgb, mask, flow) following the link here and unzip under ./database/DAVIS/
. The dataset is organized as:
DAVIS/
Annotations/
Full-Resolution/
sequence-name/
{%05d}.png
JPEGImages/
Full-Resolution/
sequence-name/
{%05d}.jpg
FlowBW/ and FlowFw/
Full-Resolution/
sequence-name/ and optionally seqname-name_{%02d}/ (frame interval)
flo-{%05d}.pfm
occ-{%05d}.pfm
visflo-{%05d}.jpg
warp-{%05d}.jpg
To run preprocessing scripts on other videos, see install.md.
Example: breakdance-flare
Run
bash scripts/template.sh breakdance-flare
To monitor optimization, run
tensorboard --logdir log/
To render optimized breakdance-flare
bash scripts/render_result.sh breakdance-flare log/breakdance-flare-1003-ft2/pred_net_20.pth 36
Example outputs:
Example: elephants
Run
bash scripts/relephant-walk.sh
To monitor optimization, run
tensorboard --logdir log/
To render optimized breakdance-flare
bash scripts/render_elephants.sh log/elephant-walk-1003-6/pred_net_10.pth
Additional Notes
Distributed training
The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev
and ngpu
in scripts/template.sh
to select devices.
Potential bugs
- When setting batch_size to 3, rendered flow may become constant values.
Acknowledgement
The code borrows the skeleton of CMR
External repos:
Citation
To cite our paper
@inproceedings{yang2021viser,
title={ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction},
author={Yang, Gengshan
and Sun, Deqing
and Jampani, Varun
and Vlasic, Daniel
and Cole, Forrester
and Liu, Ce
and Ramanan, Deva},
booktitle = {NeurIPS},
year={2021}
}
@inproceedings{yang2021lasr,
title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
author={Yang, Gengshan
and Sun, Deqing
and Jampani, Varun
and Vlasic, Daniel
and Cole, Forrester
and Chang, Huiwen
and Ramanan, Deva
and Freeman, William T
and Liu, Ce},
booktitle={CVPR},
year={2021}
}
TODO
- data pre-processing scripts
- evaluation data and scripts
- code clean up