Deep Surface Reconstruction from Point Clouds with Visibility Information

Overview

Deep Surface Reconstruction from Point Clouds with Visibility Information

Paper

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Point cloud Reconstruction Point cloud with Visibility Reconstruction

Data

ModelNet10

  • The ModelNet10 models made watertight using ManifoldPlus can be downloaded here on Zenodo.
  • The ModelNet10 scans used in our paper can be downloaded here on Zenodo. The dataset also includes training and evaluation data for ConvONet, Points2Surf, Shape As Points, POCO and DGNN.

ShapeNetv1 (13 class subset of Choy et al.)

  • The watertight ShapeNet models can be downloaded here (provided by the authors of ONet).
  • Please open an issue if you are interested in the scans used in our paper.

Synthetic Rooms Dataset

  • The watertight scenes can be downloaded here (provided by the authors of ConvONet).
  • Please open an issue if you are interested in the scans used in our paper.

Scanning Procedure

If you want to create scans of your own dataset you can use the precompiled scan executable. It should work on most Ubuntu systems.

scan -w path/to/working/directory -i meshToScan_filename --export npz

For creating the scans used in the paper the follwing settings were used:

--points 3000 --noise 0.005 --outliers 0.0

Data Loading

You can use the dataloader.py script to load visibility augmented point clouds from the produced scans.

Code and Pretrained Models

You can find our modified code and pretrained models for the surface reconstruction methods tested in our paper below. All methods support point clouds with and without visibility information.

References

If you find the code or data in this repository useful, please consider citing the following paper:

@misc{sulzer2022deep,
      title={Deep Surface Reconstruction from Point Clouds with Visibility Information}, 
      author={Raphael Sulzer and Loic Landrieu and Alexandre Boulch and Renaud Marlet and Bruno Vallet},
      year={2022},
      eprint={2202.01810},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
The official implementation code of
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction
ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction

ViSER: Video-Specific Surface Embeddings for Articulated 3D Shape Reconstruction. NeurIPS 2021.

This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Rendering Point Clouds with Compute Shaders
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Owner
Raphael Sulzer
Raphael Sulzer
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

null 151 Dec 26, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021

PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou

Yi Wei 43 Dec 5, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

??Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 8, 2023
Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Poisson Surface Reconstruction for LiDAR Odometry and Mapping Surfels TSDF Our Approach Table: Qualitative comparison between the different mapping te

Photogrammetry & Robotics Bonn 305 Dec 21, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

null 85 Jan 4, 2023
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 5, 2023
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022