PseudoSeg: Designing Pseudo Labels for Semantic Segmentation
PseudoSeg is a simple consistency training framework for semi-supervised image semantic segmentation, which has a simple and novel re-design of pseudo-labeling to generate well-calibrated structured pseudo labels for training with unlabeled or weakly-labeled data. It is implemented by Yuliang Zou (research intern) in 2020 Summer.
This is not an official Google product.
Instruction
Installation
- Use a virtual environment
virtualenv -p python3 --system-site-packages env
source env/bin/activate
- Install packages
pip install -r requirements.txt
Dataset
Create a dataset
folder under the ROOT directory, then download the pre-created tfrecords for voc12 and coco, and extract them in dataset
folder. You may also want to check the filenames for each split under data_splits
folder.
Training
NOTE:
- We train all our models using 16 V100 GPUs.
- The ImageNet pre-trained models can be download here.
- For VOC12,
${SPLIT}
can be2_clean, 4_clean, 8_clean, 16_clean_3
(representing 1/2, 1/4, 1/8, and 1/16 splits),NUM_ITERATIONS
should be set to 30000. - For COCO,
${SPLIT}
can be32_all, 64_all, 128_all, 256_all, 512_all
(representing 1/32, 1/64, 1/128, 1/256, and 1/512 splits),NUM_ITERATIONS
should be set to 200000.
Supervised baseline
python train_sup.py \
--logtostderr \
--train_split="${SPLIT}" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--train_crop_size="513,513" \
--num_clones=16 \
--train_batch_size=64 \
--training_number_of_steps="${NUM_ITERATIONS}" \
--fine_tune_batch_norm=true \
--tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
--train_logdir="${TRAIN_LOGDIR}" \
--dataset_dir="${DATASET}"
PseudoSeg (w/ unlabeled data)
python train_wss.py \
--logtostderr \
--train_split="${SPLIT}" \
--train_split_cls="train_aug" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--train_crop_size="513,513" \
--num_clones=16 \
--train_batch_size=64 \
--training_number_of_steps="${NUM_ITERATIONS}" \
--fine_tune_batch_norm=true \
--tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
--train_logdir="${TRAIN_LOGDIR}" \
--dataset_dir="${DATASET}"
PseudoSeg (w/ image-level labeled data)
python train_wss.py \
--logtostderr \
--train_split="${SPLIT}" \
--train_split_cls="train_aug" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--train_crop_size="513,513" \
--num_clones=16 \
--train_batch_size=64 \
--training_number_of_steps="${NUM_ITERATIONS}" \
--fine_tune_batch_norm=true \
--tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
--train_logdir="${TRAIN_LOGDIR}" \
--dataset_dir="${DATASET}" \
--weakly=true
Evaluation
NOTE: ${EVAL_CROP_SIZE}
should be 513,513
for VOC12, 641,641
for COCO.
python eval.py \
--logtostderr \
--eval_split="val" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--eval_crop_size="${EVAL_CROP_SIZE}" \
--checkpoint_dir="${TRAIN_LOGDIR}" \
--eval_logdir="${EVAL_LOGDIR}" \
--dataset_dir="${DATASET}" \
--max_number_of_evaluations=1
Visualization
NOTE: ${VIS_CROP_SIZE}
should be 513,513
for VOC12, 641,641
for COCO.
python vis.py \
--logtostderr \
--vis_split="val" \
--model_variant="xception_65" \
--atrous_rates=6 \
--atrous_rates=12 \
--atrous_rates=18 \
--output_stride=16 \
--decoder_output_stride=4 \
--vis_crop_size="${VIS_CROP_SIZE}" \
--checkpoint_dir="${CKPT}" \
--vis_logdir="${VIS_LOGDIR}" \
--dataset_dir="${PASCAL_DATASET}" \
--also_save_raw_predictions=true
Citation
If you use this work for your research, please cite our paper.
@article{zou2020pseudoseg,
title={PseudoSeg: Designing Pseudo Labels for Semantic Segmentation},
author={Zou, Yuliang and Zhang, Zizhao and Zhang, Han and Li, Chun-Liang and Bian, Xiao and Huang, Jia-Bin and Pfister, Tomas},
journal={International Conference on Learning Representations (ICLR)},
year={2021}
}