Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Related tags

Deep Learning TTP
Overview

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation

This is an official implementation of the NeurIPS 2021 paper: Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation. More details can be found at our project website.

teaser

Preparation

  1. Install dependencies
pip install -r requirements.txt
  1. Make libs

    cd ${PROJECT_ROOT}/lib
    make
  2. Place Penn Action data in data directory. (Instructions on Human3.6M and BBC Pose are coming soon.)

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── data
        └── Penn_Action
            ├── frames
            ├── labels
            ├── tools
            └── README
    
  3. Download pretrained model of ResNet-18 and ResNet-50 and place them in models/pytorch/imagenet.

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── models
        └── pytorch
            └── imagenet
                ├── resnet18-5c106cde.pth
                └── resnet50-19c8e357.pth
    

Training and Test-time Personalization

Training

python tools/train_joint.py \
   --cfg experiments/penn/joint_res50_128x128_1e-3_comb_attn_tf1_4head.yaml

Run Test-Time Personalization (online)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_online_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Run Test-Time Personalization (offline)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_offline_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Baseline Model

To train the baseline model for comparison

python tools/train.py --cfg experiments/penn/res50_128x128.yaml

Result

Configs, results and model checkpoints on Human3.6M and BBC Pose are coming soon.

Method TTP Scenario Penn Action Checkpoint
Baseline - 85.233 Google Drive
Ours before TTP 86.283 Google Drive
Ours online 87.660 -
Ours offline 88.633 -

Acknowlegement

TTP is developed based on HRNet. We also incorperate some code from IMM.

You might also like...
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

Code for ICCV 2021 paper
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

The project is an official implementation of our CVPR2019 paper
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Human head pose estimation using Keras over TensorFlow.
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Owner
null
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 2, 2023
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 5, 2023
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 7, 2023
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 7, 2023
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 3, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

null 37 Nov 21, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022