Ludwig Benchmarking Toolkit

Overview

Ludwig Benchmarking Toolkit

The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an extensible set of tasks, deep learning models, standard datasets and evaluation metrics.

Getting set-up

To get started, use the following commands to set-up your conda environment.

git clone https://github.com/HazyResearch/ludwig-benchmarking-toolkit.git
cd ludwig-benchmarking-toolkit
conda env create -f environments/{environment-osx.yaml, environment-linux.yaml}
conda activate lbt

Relevant files and directories

experiment-templates/task_template.yaml: Every task (i.e. text classification) will have its owns task template. The template specifies the model architecture (encoder and decoder structure), training parameters, and a hyperopt configuration for the task at hand. A large majority of the values of the template will be populated by the values in the hyperopt_config.yaml file and dataset_metadata.yaml at training time. The sample task template located in experiment-templates/task_template.yaml is for text classification. See sample-task-templates/ for other examples.

experiment-templates/hyperopt_config.yaml: provides a range of values for training parameters and hyperopt params that will populate the hyperopt configuration in the model template

experiment-templates/dataset_metadata.yaml: contains list of all available datasets (and associated metadata) that the hyperparameter optimization can be performed over.

model-configs/: contains all encoder specific yaml files. Each files specifies possible values for relevant encoder parameters that will be optimized over. Each file in this directory adheres to the naming convention {encoder_name}_hyperopt.yaml

hyperopt-experiment-configs/: houses all experiment configs built from the templates specified above (note: this folder will be populated at run-time) and will be used when the hyperopt experiment is called. At a high level, each config file specifies the training and hyperopt information for a (task, dataset, architecture) combination. An example might be (text classification, SST2, BERT)

elasticsearch_config.yaml : this is an optional file that is to be defined if an experiment data will be saved to an elastic database.

USAGE

Command-Line Usage

Running your first TOY experiment:

For testing/setup purposes we have included a toy dataset called toy_agnews. This dataset contains a small set of training, test and validation samples from the original agnews dataset.

Before running a full-scale experiment, we recommend running an experiment locally on the toy dataset:

python experiment_driver.py --run_environment local --datasets toy_agnews --custom_models_list rnn

Running your first REAL experiment:

Steps for configuring + running an experiment:

  1. Declare and configure the search space of all non-model specific training and preprocessing hyperparameters in the experiment-templates/hyperopt_config.yaml file. The parameters specified in this file will be used across all model experiments.

  2. Declare and configure the search space of model specific hyperparameters in the {encoder}_hyperopt.yaml files in ./model_configs

    NOTE:

    • for both (1) and (2) see the Ludwig Hyperparamter Optimization guide to see what parameters for training, preprocessing, and input/ouput features can be used in the hyperopt search
    • if the exectuor type is Ray the list of available search spaces and input format differs slightly than the built-in ludwig types. Please see the Ray Tune search space docs for more information.
  3. Run the following command specifying the datasets, encoders, path to elastic DB index config file, run environment and more:

        python experiment_driver.py \
            --experiment_output_dir  
         
          
            --run_environment {local, gcp}
            --elasticsearch_config 
          
           
            --dataset_cache_dir 
           
            
            --custom_model_list 
            
             
            --datasets 
             
               --resume_existing_exp bool 
             
            
           
          
         

NOTE: Please use python experiment_driver.py -h to see list of available datasets, encoders and args

API Usage

It is also possible to run, customize and experiments using LBTs APIs. In the following section, we describe the three flavors of APIs included in LBT.

experiment API

This API provides an alternative method for running experiments. Note that runnin experiments via the API still requires populating the aforemented configuration files

from lbt.experiments import experiment

experiment(
    models = ['rnn', 'bert'],
    datasets = ['agnews'],
    run_environment = "local",
    elastic_search_config = None,
    resume_existing_exp = False,
)

tools API

This API provides access to two tooling integrations (TextAttack and Robustness Gym (RG)). The TextAttack API can be used to generate adversarial attacks. Moreover, users can use the TextAttack interface to augment data files. The RG API which empowers users to inspect model performance on a set of generic, pre-built slices and to add more slices for their specific datasets and use cases.

from lbt.tools.robustnessgym import RG 
from lbt.tools.textattack import attack, augment

# Robustness Gym API Usage
RG( dataset_name="AGNews",
    models=["bert", "rnn"],
    path_to_dataset="agnews.csv", 
    subpopulations=[ "entities", "positive_words", "negative_words"]))

# TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
    path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter"])

augment(dataset_name="AGNews", transformations_per_example=1
   path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

visualizations API

This API provides out-of-the-box support for visualizations for learning behavior, model performance, and hyperparameter optimization using the training and evaluation statistics generated during model training

import lbt.visualizations

# compare model performance
compare_performance_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# compare training and validation trajectory
learning_curves_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# visualize hyperoptimzation search
hyperopt_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_dir="."
)

EXPERIMENT EXTENSIBILITY

Adding new custom datasets

Adding custom dataset requires creating a new LBTDataset class and adding it to the dataset registry. Creating an LBTDataset object requires implementing three class methods: download, process and load. Please see the the ToyAGNews dataset as an example.

Adding new metrics

Adding custom evaluation metrics requires creating a new LBTMetric class and adding it to the metrics registry. Creating an LBTMetric object requires implementing the run class method which takes as potential inputs a path to a model directory, path to a dataset, training batch size, and training statistics. Please see the pre-built LBT metrics for examples.

ELASTICSEARCH RESEARCH DATABASE

To get credentials to upload experiments to the shared Elasticsearch research database, please fill out this form.

You might also like...
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

Code for the paper
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Evaluation and Benchmarking of Speech Super-resolution Methods
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Repo for
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

Comments
  • BugFixes

    BugFixes

    • Updated readme to remove arg that doesnt seem to exist anymore
    • Updated datasets to remove dataset that no longer exists in ludwig
    • Updated metrics to remove import arg that was incorrect
    opened by skanjila 0
Owner
HazyResearch
We are a CS research group led by Prof. Chris Ré.
HazyResearch
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17k Feb 11, 2021
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

null 268 Jan 1, 2023
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 6, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

null 132 Dec 23, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 12 Sep 26, 2021
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Filip Radenovic 188 Dec 17, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022