MTM
This is the official repository of the paper:
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.
Qiang Sheng, Juan Cao, Xueyao Zhang, Xirong Li, and Lei Zhong.
Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)
PDF / Poster / Code / Chinese Dataset / Chinese Blog 1 / Chinese Blog 2
Datasets
There are two experimental datasets, including the Twitter Dataset, and the firstly proposed Weibo Dataset. Note that you can download the Weibo Dataset only after an "Application to Use the Chinese Dataset for Detecting Previously Fact-Checked Claim" has been submitted.
Code
Key Requirements
python==3.6.10
torch==1.6.0
torchvision==0.7.0
transformers==3.2.0
Usage for Weibo Dataset
After you download the dataset (the way to access is described here), move the FN_11934_filtered.json
and DN_27505_filtered.json
into the path MTM/dataset/Weibo/raw
:
mkdir MTM/dataset/Weibo/raw
mv FN_11934_filtered.json MTM/dataset/Weibo/raw
mv DN_27505_filtered.json MTM/dataset/Weibo/raw
Preparation
Tokenize
cd MTM/preprocess/tokenize
sh run_weibo.sh
ROT
cd MTM/preprocess/ROT
You can refer to the run_weibo.sh
, which includes three steps:
-
Prepare RougeBert's Training data:
python prepare_for_rouge.py --dataset Weibo --pretrained_model bert-base-chinese
-
Training:
CUDA_VISIBLE_DEVICES=0 python main.py --debug False \ --dataset Weibo --pretrained_model bert-base-chinese --save './ckpts/Weibo' \ --rouge_bert_encoder_layers 1 --rouge_bert_regularize 0.01 \ --fp16 True
then you can get
ckpts/Weibo/[EPOCH].pt
. -
Vectorize the claims and articles (get embeddings):
CUDA_VISIBLE_DEVICES=0 python get_embeddings.py \ --dataset Weibo --pretrained_model bert-base-chinese \ --rouge_bert_model_file './ckpts/Weibo/[EPOCH].pt' \ --batch_size 1024 --embeddings_type static
PMB
cd MTM/preprocess/PMB
-
Prepare the clustering data:
mkdir data mkdir data/Weibo
and you can get
data/Weibo/clustering_training_data_[TS_SMALL]
after running<[TS_LARGE].pkl calculate_init_thresholds.ipynb
. -
Kmeans clustering. You can refer to the
run_weibo.sh
:python kmeans_clustering.py --dataset Weibo --pretrained_model bert-base-chinese --clustering_data_file 'data/Weibo/clustering_training_data_[TS_SMALL]
<[TS_LARGE].pkl' then you can get
data/Weibo/kmeans_cluster_centers.npy
.
Besides, it is available to see some cases of key sentences selection in key_sentences_selection_cases_Weibo.ipynb
.
Training and Inferring
cd MTM/model
mkdir data
mkdir data/Weibo
You can refer to the run_weibo.sh
:
CUDA_VISIBLE_DEVICES=0 python main.py --debug False --save 'ckpts/Weibo' \
--dataset 'Weibo' --pretrained_model 'bert-base-chinese' \
--rouge_bert_model_file '../preprocess/ROT/ckpts/Weibo/[EPOCH].pt' \
--memory_init_file '../preprocess/PMB/data/Weibo/kmeans_cluster_centers.npy' \
--claim_sentence_distance_file './data/Weibo/claim_sentence_distance.pkl' \
--pattern_sentence_distance_init_file './data/Weibo/pattern_sentence_distance_init.pkl' \
--memory_updated_step 0.3 --lambdaQ 0.6 --lambdaP 0.4 \
--selected_sentences 3 \
--lr 5e-6 --epochs 10 --batch_size 32 \
then the results and ranking reports will be saved in ckpts/Weibo
.
Usage for Twitter Dataset
The description of the dataset can be seen at here.
Preparation
Tokenize
cd MTM/preprocess/tokenize
sh run_twitter.sh
ROT
cd MTM/preprocess/ROT
You can refer to the run_twitter.sh
, which includes three steps:
-
Prepare RougeBert's Training data:
python prepare_for_rouge.py --dataset Twitter --pretrained_model bert-base-uncased
-
Training:
CUDA_VISIBLE_DEVICES=0 python main.py --debug False \ --dataset Twitter --pretrained_model bert-base-uncased --save './ckpts/Twitter' \ --rouge_bert_encoder_layers 1 --rouge_bert_regularize 0.05 \ --fp16 True
then you can get
ckpts/Twitter/[EPOCH].pt
. -
Vectorize the claims and articles (get embeddings):
CUDA_VISIBLE_DEVICES=0 python get_embeddings.py \ --dataset Twitter --pretrained_model bert-base-uncased \ --rouge_bert_model_file './ckpts/Twitter/[EPOCH].pt' \ --batch_size 1024 --embeddings_type static
PMB
cd MTM/preprocess/PMB
-
Prepare the clustering data:
mkdir data mkdir data/Twitter
and you can get
data/Twitter/clustering_training_data_[TS_SMALL]
after running<[TS_LARGE].pkl calculate_init_thresholds.ipynb
. -
Kmeans clustering. You can refer to the
run_twitter.sh
:python kmeans_clustering.py --dataset Twitter --pretrained_model bert-base-uncased --clustering_data_file 'data/Twitter/clustering_training_data_[TS_SMALL]
<[TS_LARGE].pkl' then you can get
data/Twitter/kmeans_cluster_centers.npy
.
Besides, it is available to see some cases of key sentences selection in key_sentences_selection_cases_Twitter.ipynb
.
Training and Inferring
cd MTM/model
mkdir data
mkdir data/Twitter
You can refer to the run_twitter.sh
:
CUDA_VISIBLE_DEVICES=0 python main.py --debug False --save 'ckpts/Twitter' \
--dataset 'Twitter' --pretrained_model 'bert-base-uncased' \
--rouge_bert_model_file '../preprocess/ROT/ckpts/Twitter/[EPOCH].pt' \
--memory_init_file '../preprocess/PMB/data/Twitter/kmeans_cluster_centers.npy' \
--claim_sentence_distance_file './data/Twitter/claim_sentence_distance.pkl' \
--pattern_sentence_distance_init_file './data/Twitter/pattern_sentence_distance_init.pkl' \
--memory_updated_step 0.3 --lambdaQ 0.6 --lambdaP 0.4 \
--selected_sentences 5 \
--lr 1e-4 --epochs 10 --batch_size 16 \
then the results and ranking reports will be saved in ckpts/Twitter
.
Citation
@inproceedings{MTM,
author = {Qiang Sheng and
Juan Cao and
Xueyao Zhang and
Xirong Li and
Lei Zhong},
title = {Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting
Previously Fact-Checked Claims},
booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural
Language Processing, {ACL/IJCNLP} 2021},
pages = {5468--5481},
publisher = {Association for Computational Linguistics},
year = {2021},
url = {https://doi.org/10.18653/v1/2021.acl-long.425},
doi = {10.18653/v1/2021.acl-long.425},
}