Official Code for "Non-deep Networks"

Overview

Non-deep Networks
arXiv:2110.07641
Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun

Overview: Depth is the hallmark of DNNs. But more depth means more sequential computation and higher latency. This begs the question -- is it possible to build high-performing ``non-deep" neural networks? We show that it is. We show, for the first time, that a network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet, 96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a low-depth (12) backbone can achieve an AP of 48% on MS-COCO.

If you find our work useful, please consider citing it:

@article{goyal2021nondeep,
  title={Non-deep Networks},
  author={Goyal, Ankit and Bochkovskiy, Alexey and Deng, Jia and Koltun, Vladlen},
  journal={arXiv:2110.07641},
  year={2021}
}

Code Coming Soon!

Comments
  • when will the code of the model be released?

    when will the code of the model be released?

    I am very interested in your research, when will the code of the model be released? I saw on October 23rd that you said it would be released in 4 weeks

    opened by Dr-Goopher 6
  • When will the code be released?

    When will the code be released?

    I am very interested in your work and would like to further study. I hope you can release the code as soon as possible in your busy schedule. Thank you!

    opened by SenShu96 5
  • what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    what is the meaning of 'Shuffle' of fusion block in Fig. A1?

    Hello. Thank you for your great study. I wonder the meaning of 'Shuffle' of fusion block in Fig. A1. Is it pixel shuffle layer? Please let me know the meaning of that.

    Thank you.

    opened by jhcha08 3
  • Question about SSE module

    Question about SSE module

    Hi. Figure 2b shows that there's one 1x1conv in a branch of SSE, how to match the channel of output by 1x1conv with the channel of input after shortcut? If I set the output channel of 1x1conv the same as input, the channels of the outputs by RepVGG block and SSE will not match.

    opened by Tsianmy 2
  • Really faster than ResNet? I am very confused

    Really faster than ResNet? I am very confused

    Hello, my friend, appreciate for your great work! I have tested the code on https://github.com/Pritam-N/ParNet by Pritam-N and change the ResNet code in my model by using your ParNet , but the actual time is quite slow than the paper said. My block size is [64, 128, 256, 512, 2048], and the time of "forward()" is more than 5s average while the Resnet is 0.02s in my device. I have use the time function for every line in the forward(), find that the encode stuff is the main reason. I continue write time.perf_counter() in the encode stuff, find that the "self.stream2_fusion" and "self.stream3_fusion" is the most time user. Do you know why ?

    opened by StonepageVan 1
  •  fusion module, accuracy about cifar100

    fusion module, accuracy about cifar100

    1. what is your shuffle code in your fusion module?
    2. what is your model architecture in cifar-100? I just changed front two downsample modules based on the ParNet for Imagenet in the paper. But the accuracy is lower. And How do you set the LR, MILESTONES and NUM_EPOCH to meet high accuracy?
    opened by qq769852576 2
Owner
Ankit Goyal
Phd Candidate @Princeton | Works in CV and AI
Ankit Goyal
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 8, 2023
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 6, 2023
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Official PyTorch Code of GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection (CVPR 2021)

GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Mo

Abhinav Kumar 76 Jan 2, 2023
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 8, 2023
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashlight or camera with flash.

null 89 Dec 10, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 8, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 9, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

null 34 Nov 9, 2022
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022