Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Introduction
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Our contributions are as follows
Objective
Architecture
Requirements
torch==1.7.1
torchvision==0.8.2
matplotlib==3.4.1
scikit-learn==0.24.1
gensim==4.0.1
scipy==1.6.2
seaborn==0.11.1
Pillow==8.2.0
Datasets
Please download mannually TREC dataset
TREC TREC
Reproducing results of the paper
e.g., mnist on class conditional noise setting
mkdir ckpt
mkdir res
cd scripts
./ccn_mnist.sh
💡
Class Conditional Noise
CIFAR10
Flipping Rate | F-correction | Co-teaching | Co-teaching+ | JoCoR | MLN(ours) |
---|---|---|---|---|---|
Symmetry-20% | 68.74±0.20 | 78.23±0.27 | 78.71±0.34 | 85.73±0.19 | 84.20±0.05 |
Symmetry-50% | 42.71±0.42 | 71.30±0.13 | 57.05±0.54 | 79.41±0.25 | 77.88±0.07 |
Symmetry-80% | 15.88±0.42 | 26.58±2.22 | 24.19±2.74 | 27.78±3.06 | 41.83±0.10 |
Asymmetry-40% | 70.60±0.40 | 73.78±0.22 | 68.84±0.20 | 76.36±0.49 | 76.62±0.07 |
Noise Transition Matrix on CIFAR10
💡
Set Dependent Noise
aleatoric uncertainty for the ambiguous set is higher than the clean set and larger for more label noise rate.
estimated noise transition matrix for partioned sets are:
Citing our paper
If you find this work useful please consider citing it:
@article{papername,
title={title},
author={authors},
journal={arXiv preprint arXiv:xxxx.xxxxx},
year={2021}
}