Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Overview

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Introduction

📋 Official implementation of Explainable Robust Learning MLNThis repository is official im the following paper:

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Arxiv

Our contributions are as follows

✔️ We propose a simple yet effective robust learning method leveraging a mixture of experts model on various noise settings.

✔️ The proposed method can not only robustly train from noisy data, but can also provide the explainability by discovering the underlying instance wise noise pattern within the dataset as well the two types of predictive uncertainties(aleatoric and epistemic)

✔️ We present a novel evaluation scheme for validating the set-dependent corruption pattern estimation performance.

Objective

Architecture

Requirements

torch==1.7.1
torchvision==0.8.2
matplotlib==3.4.1
scikit-learn==0.24.1
gensim==4.0.1
scipy==1.6.2
seaborn==0.11.1
Pillow==8.2.0

Datasets

Please download mannually TREC dataset

TREC TREC

Reproducing results of the paper

e.g., mnist on class conditional noise setting

mkdir ckpt
mkdir res
cd scripts
./ccn_mnist.sh

💡 Class Conditional Noise

CIFAR10

Flipping Rate F-correction Co-teaching Co-teaching+ JoCoR MLN(ours)
Symmetry-20% 68.74±0.20 78.23±0.27 78.71±0.34 85.73±0.19 84.20±0.05
Symmetry-50% 42.71±0.42 71.30±0.13 57.05±0.54 79.41±0.25 77.88±0.07
Symmetry-80% 15.88±0.42 26.58±2.22 24.19±2.74 27.78±3.06 41.83±0.10
Asymmetry-40% 70.60±0.40 73.78±0.22 68.84±0.20 76.36±0.49 76.62±0.07

Noise Transition Matrix on CIFAR10

💡 Set Dependent Noise

aleatoric uncertainty for the ambiguous set is higher than the clean set and larger for more label noise rate.

estimated noise transition matrix for partioned sets are:

Citing our paper

If you find this work useful please consider citing it:

@article{papername,
  title={title},
  author={authors},
  journal={arXiv preprint arXiv:xxxx.xxxxx},
  year={2021}
}
You might also like...
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021].  https://arxiv.org/pdf/2101.12378.pdf
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Python and C++ implementation of
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

Robust Consistent Video Depth Estimation
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

Code for ICCV 2021 paper
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Official implementation of
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

Owner
JeongEun Park
Interested in artificial intelligence and robotics
JeongEun Park
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

null 308 Jan 4, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 4, 2023
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
LBK 35 Dec 26, 2022