Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

Overview

简体中文 | English

miemiedetection

概述

miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的检测库用户可以直接更改其代码改变执行逻辑,所见即所得!所以往miemiedetection里加入新的算法是一件很容易的事情(可以参考PPYOLO的写法往miemiedetection里加入新的算法)。得益于YOLOX的优秀架构,miemiedetection里的算法训练速度都非常快,数据读取不再是训练速度的瓶颈!目前miemiedetection支持YOLOX、PPYOLO、PPYOLOv2等算法,预计未来会加入更多算法,所以请大家点个star吧!

安装依赖

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

torch版本建议1.9.1+cu102或者更高;torchvision版本建议0.10.1+cu102或者更高。

支持的算法

传送门

cv算法交流q群:645796480 但是关于仓库的疑问尽量在Issues上提,避免重复解答。

B站不定时女装: _糖蜜

知乎不定时谢邀、写文章: 咩咩2013

西瓜视频: 咩咩2013

本人微信公众号:miemie_2013

技术博客:https://blog.csdn.net/qq_27311165

AIStudio主页:asasasaaawws

欢迎在GitHub或上面的平台关注我(求粉)~

打赏

如果你觉得这个仓库对你很有帮助,可以给我打钱↓ Example 0

咩酱爱你哟!

引用

 @article{yolox2021,
  title={YOLOX: Exceeding YOLO Series in 2021},
  author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian},
  journal={arXiv preprint arXiv:2107.08430},
  year={2021}
}
You might also like...
YOLOX Win10 Project
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

YOLOX-RMPOLY
YOLOX-RMPOLY

本算法为适应robomaster比赛,而改动自矩形识别的yolox算法。 基于旷视科技YOLOX,实现对不规则四边形的目标检测 TODO 修改onnx推理模型 更改/添加标注: 1.yolox/models/yolox_polyhead.py: 1.1继承yolox/models/yolo_

The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

An essential implementation of BYOL in PyTorch + PyTorch Lightning
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

RealFormer-Pytorch Implementation of RealFormer using pytorch
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

A pytorch implementation of  Pytorch-Sketch-RNN
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

Comments
  • yolox_head_fast.py中当G == 0的返回loss有问题

    yolox_head_fast.py中当G == 0的返回loss有问题

    if G == 0: # 所有图片都没有gt时 obj_targets = torch.zeros((N, A, 1), dtype=torch.float32, device=obj_preds.device) num_fg = 1 # 所有图片都没有gt时,设为1 loss_obj = self.bcewithlog_loss(obj_preds, obj_targets) loss_obj = loss_obj.sum() / num_fg losses = { "loss_obj": loss_obj, } return losses yolox_head_fast.py中的这一段是不是错了 这个losses和下面的对不上 return ( loss, reg_weight * loss_iou, loss_obj, loss_cls, loss_l1, num_fg / max(num_gts, 1), )

    opened by xiaoxuebajie 0
  • 训练中途出现fast_cocoeval问题

    训练中途出现fast_cocoeval问题

    你好,很高兴这里有你的辛苦整理,对我有很大的帮助,但是当我浮现代码跑了2个epoch时候,出现如下错误,请问怎么解决啊

    File "C:\D_installation_packet\Anaconda\installion_package\envs\yolox\lib\site-packages\torch\utils\cpp_extension.py", line 1079, in load return _jit_compile( └ <function _jit_compile at 0x00000213A2B06550>

    File "C:\D_installation_packet\Anaconda\installion_package\envs\yolox\lib\site-packages\torch\utils\cpp_extension.py", line 1292, in _jit_compile _write_ninja_file_and_build_library( └ <function _write_ninja_file_and_build_library at 0x00000213A2B06670>

    File "C:\D_installation_packet\Anaconda\installion_package\envs\yolox\lib\site-packages\torch\utils\cpp_extension.py", line 1404, in _write_ninja_file_and_build_library _run_ninja_build( └ <function _run_ninja_build at 0x00000213A2B06AF0>

    File "C:\D_installation_packet\Anaconda\installion_package\envs\yolox\lib\site-packages\torch\utils\cpp_extension.py", line 1683, in _run_ninja_build raise RuntimeError(message) from e └ "Error building extension 'fast_cocoeval'"

    RuntimeError: Error building extension 'fast_cocoeval'

    Process finished with exit code 0

    opened by Wisdom2wisdom 0
  • 训练自定义数据集时出了个错

    训练自定义数据集时出了个错

    An error has been caught in function 'launch', process 'MainProcess' (5932), t hread 'MainThread' (20804): Traceback (most recent call last):

    File "tools\train.py", line 137, in launch( └ <function launch at 0x0000022C3AC6AAF0>

    File "D:\YoLo\miemiedetection-main\mmdet\core\launch.py", line 98, in launch main_func(*args) │ └ (╒═══════════════════════╤═══════════════════════════════════════════════════════════════════════════════════════════ ════════... └ <function main at 0x0000022C3AC6AE50>

    File "tools\train.py", line 115, in main trainer.train() │ └ <function Trainer.train at 0x0000022C3D390430> └ <mmdet.core.trainer.Trainer object at 0x0000022C3D421880>

    File "D:\YoLo\miemiedetection-main\mmdet\core\trainer.py", line 101, in train self.before_train() │ └ <function Trainer.before_train at 0x0000022C3D3909D0> └ <mmdet.core.trainer.Trainer object at 0x0000022C3D421880>

    File "D:\YoLo\miemiedetection-main\mmdet\core\trainer.py", line 504, in before_train self.train_loader = self.exp.get_data_loader( │ │ │ └ <function PPYOLOE_Method_Exp.get_data_loader at 0x0000022C3D3F8B80> │ │ └ ╒═══════════════════════╤══════════════════════════════════════════════════════════════════════════════ ══════════════════════... │ └ <mmdet.core.trainer.Trainer object at 0x0000022C3D421880> └ <mmdet.core.trainer.Trainer object at 0x0000022C3D421880>

    File "D:\YoLo\miemiedetection-main\mmdet\exp\ppyoloe\ppyoloe_method_base.py", line 260, in get_data_loader train_dataset = PPYOLOE_COCOTrainDataset( └ <class 'mmdet.data.datasets.coco.PPYOLOE_COCOTrainDataset'>

    File "D:\YoLo\miemiedetection-main\mmdet\data\datasets\coco.py", line 780, in init train_records = data_clean(train_dataset, train_img_ids, _catid2clsid, train_pre_path, 'train', xy_plus_1=True) │ │ │ │ └ 'datasets\Go_Black_White_COCO/train2017' │ │ │ └ {0: 0, 1: 1, 2: 2, 3: 3} │ │ └ ['000001', '000002', '000004', '000005', '000006', '000007', '000008', '000009', '0000 10', '000011', '000012', '000013', '000... │ └ <pycocotools.coco.COCO object at 0x0000022C3D5233D0> └ <function data_clean at 0x0000022C3C6B28B0>

    File "D:\YoLo\miemiedetection-main\mmdet\data\datasets\coco.py", line 229, in data_clean img_anno = coco.loadImgs(img_id)[0] │ │ └ '000001' │ └ <function COCO.loadImgs at 0x0000022C3D39A3A0> └ <pycocotools.coco.COCO object at 0x0000022C3D5233D0>

    File "D:\Anaconda3\lib\site-packages\pycocotools\coco.py", line 229, in loadImgs return [self.imgs[id] for id in ids] │ │ └ '000001' │ └ {'000001': {'file_name': '000001.jpg', 'height': 640, 'width': 640, 'id': '000001'}, '000002': {'file_name': '00000 2.jpg', 'h... └ <pycocotools.coco.COCO object at 0x0000022C3D5233D0>

    File "D:\Anaconda3\lib\site-packages\pycocotools\coco.py", line 229, in return [self.imgs[id] for id in ids] │ │ │ └ '0' │ │ └ '0' │ └ {'000001': {'file_name': '000001.jpg', 'height': 640, 'width': 640, 'id': '000001'}, '000002': {'file_name': '00000 2.jpg', 'h... └ <pycocotools.coco.COCO object at 0x0000022C3D5233D0>

    KeyError: '0'

    opened by MrAccelerator 0
  • 支持ppyoloe plus 的转换么?

    支持ppyoloe plus 的转换么?

    我自己在aistudio(白嫖v100)上训练了个ppyoloe plus模型,用ppyoloe 的权重转换脚本转换报错: 脚本命令:

    python tools/convert_weights.py -f exps/ppyoloe/ppyoloe_crn_s_300e_coco.py -c model_final.pdparams -oc ppyoloe_crn_s_300e_coco.pth -nc 1
    
    image
    opened by ChaoII 0
Owner
为爱发电的coder,微信wer186259,q群:645796480,欢迎加入!
null
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 9, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

null 91 Dec 26, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

null 7.7k Jan 3, 2023
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

null 245 Dec 26, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line-> one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 3, 2023
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022