CUDA_VISIBLE_DEVICES=3 python scripts/train.py --dataset_type=ffhq_encode --exp_dir=results/debug --batch_size=2 --test_batch_size=2 --val_interval=2500 --save_interval=5000 --stylegan_weights=pretrained_models/stylegan2-ffhq-config-f.pt
{'batch_size': 2,
'board_interval': 50,
'checkpoint_path': None,
'dataset_type': 'ffhq_encode',
'exp_dir': 'results/debug',
'id_lambda': 0.1,
'image_interval': 5000,
'input_nc': 3,
'l2_lambda': 1.0,
'l2_ref_lambda': 1.0,
'l2_src_lambda': 1.0,
'label_nc': 0,
'learn_in_w': False,
'learning_rate': 0.0001,
'lpips_lambda': 0.8,
'max_steps': 600000,
'moco_lambda': 0,
'optim_name': 'ranger',
'output_size': 1024,
'resize_factors': None,
'save_interval': 5000,
'start_from_latent_avg': True,
'stylegan_weights': 'pretrained_models/stylegan2-ffhq-config-f.pt',
'test_batch_size': 2,
'test_workers': 0,
'train_decoder': False,
'val_interval': 2500,
'workers': 0}
Loading encoders weights from irse50!
Loading decoder weights from pretrained!
Loading ResNet ArcFace
Loading dataset for ffhq_encode
Number of training samples: 70000
Number of test samples: 30000
Traceback (most recent call last):
File "scripts/train.py", line 35, in
main()
File "scripts/train.py", line 31, in main
coach.train()
File "/home/hba/xurz/style-transformer-backup/./training/coach_invert.py", line 82, in train
y_hat, latent = self.net.forward(x, return_latents=True)
File "/home/hba/xurz/style-transformer-backup/./models/style_transformer.py", line 73, in forward
images, result_latent = self.decoder([codes],
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 166, in forward
return self.module(*inputs[0], **kwargs[0])
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/hba/xurz/style-transformer-backup/./models/stylegan2/model.py", line 530, in forward
out = conv1(out, latent[:, i], noise=noise1)
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/hba/xurz/style-transformer-backup/./models/stylegan2/model.py", line 333, in forward
out = self.conv(input, style)
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/hba/xurz/style-transformer-backup/./models/stylegan2/model.py", line 258, in forward
out = self.blur(out)
File "/home/hba/miniconda3/envs/pytorch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
return forward_call(*input, **kwargs)
File "/home/hba/xurz/style-transformer-backup/./models/stylegan2/model.py", line 85, in forward
out = upfirdn2d(input, self.kernel, pad=self.pad)
TypeError: upfirdn2d(): incompatible function arguments. The following argument types are supported:
1. (arg0: at::Tensor, arg1: at::Tensor, arg2: int, arg3: int, arg4: int, arg5: int, arg6: int, arg7: int, arg8: int, arg9: int) -> at::Tensor
Invoked with: tensor([[[[-7.0863e-02, -1.9267e-02, 1.1953e-01, ..., 3.6038e-02,
-5.0872e-02, 1.7522e-01],
[ 4.7256e-02, 2.0239e-01, 2.4303e-01, ..., -2.4588e-01,
-6.1401e-02, 1.9535e-01],
[ 8.9887e-02, 2.8334e-01, 3.7718e-01, ..., -6.3546e-01,
-4.9164e-01, -3.5744e-01],
...,
[ 3.9674e-01, -5.6920e-01, -1.5007e+00, ..., -1.8475e-01,
-2.0443e-01, -2.0384e-01],
[ 3.1867e-01, -2.8569e-02, -1.1513e+00, ..., -6.8369e-01,
-1.5514e-01, -2.6385e-01],
[ 3.9637e-01, 1.1031e-01, -4.8724e-01, ..., -4.9993e-01,
-7.2906e-03, -1.2178e-01]],
[[ 3.2634e-02, -3.8011e-03, -2.7605e-02, ..., 1.5077e-01,
-1.2546e-01, 1.5372e-02],
[-1.1103e-02, 3.4795e-02, 4.5295e-02, ..., -3.0931e-02,
-6.0514e-02, 1.3120e-01],
[ 9.4653e-02, 5.5100e-02, -1.1730e-01, ..., 3.8312e-01,
2.0375e-01, 3.8039e-01],
...,
[-2.2502e-01, -3.6959e-01, -1.1004e+00, ..., -5.3195e-01,
-1.2216e-01, -2.0280e-01],
[-7.3724e-02, -1.9792e-01, -3.5554e-01, ..., -2.7539e-02,
-8.5349e-02, -1.8674e-01],
[-3.0079e-01, -3.9553e-01, -2.5432e-01, ..., 9.5803e-02,
4.9642e-02, -5.1067e-02]],
[[ 7.0051e-02, -1.0902e-01, -3.5707e-01, ..., -2.6778e-01,
-7.4599e-02, -9.3972e-02],
[ 1.7302e-01, -4.3622e-03, -4.4086e-01, ..., 5.4927e-02,
-1.2039e-01, -2.4331e-01],
[-6.5779e-02, 5.1633e-03, -2.1504e-03, ..., 5.5416e-01,
5.9228e-01, -3.0418e-01],
...,
[-1.3928e-01, 2.4431e-02, -5.3865e-01, ..., 2.1794e+00,
-4.5357e-01, -7.8216e-01],
[-3.1485e-01, 8.6408e-03, -3.2148e-01, ..., 1.0229e+00,
-2.6701e-02, -2.4561e-01],
[-1.8246e-01, -1.0159e-01, 3.0965e-01, ..., 2.1239e-01,
1.2809e-01, -7.9901e-02]],
...,
[[-1.1881e-01, 1.1500e-01, 4.2204e-01, ..., 1.1155e-01,
-1.3575e-01, -1.2005e-01],
[-2.6823e-02, 3.8702e-02, 2.7662e-01, ..., -1.2204e-01,
-5.9489e-02, 5.7028e-02],
[ 4.3397e-01, 3.4989e-01, -5.9945e-01, ..., -1.0691e-01,
2.2342e-01, 1.6033e-01],
...,
[ 6.4690e-02, -3.0652e-01, 7.9697e-01, ..., -7.2266e-01,
-6.8843e-01, -4.6057e-01],
[ 6.2778e-02, 1.0604e-01, -2.5180e-02, ..., -3.2028e-01,
-2.3006e-01, -3.5884e-02],
[ 1.0963e-02, 1.3945e-01, 1.6201e-01, ..., 9.0606e-02,
-2.4952e-01, -2.9084e-01]],
[[-2.8116e-01, -1.6318e-01, 5.4617e-02, ..., -1.5196e-01,
-6.0700e-02, 1.3869e-03],
[-3.7157e-02, -1.5182e-01, -3.1035e-01, ..., 5.9000e-02,
-2.0383e-02, 8.2096e-02],
[-9.8154e-02, -1.5565e-01, -5.4512e-01, ..., 2.2385e-01,
8.9730e-02, -2.5882e-01],
...,
[-2.0729e-01, -1.1295e-01, -1.2671e+00, ..., 4.4530e-01,
-2.5992e-01, -3.9009e-01],
[-3.6128e-02, -1.0358e-01, -4.3999e-01, ..., 4.2818e-01,
-9.3182e-02, -4.7367e-02],
[ 1.1230e-01, -8.7373e-03, 2.7169e-01, ..., 3.5928e-01,
2.2897e-01, 7.2306e-03]],
[[ 6.5134e-02, 1.4504e-02, 2.8846e-02, ..., 2.4671e-01,
7.6808e-02, -3.0013e-01],
[ 6.7936e-03, 1.5039e-02, 7.2357e-02, ..., 1.2040e-01,
-2.6003e-02, -8.9164e-02],
[-1.5093e-01, 1.6345e-02, -4.5325e-01, ..., 4.6241e-01,
-1.9645e-01, 1.0321e-01],
...,
[ 4.6823e-02, -1.5455e-01, -1.4505e+00, ..., 5.8839e-01,
2.1670e-01, -1.9133e-02],
[ 2.4774e-01, -1.6071e-02, -8.1439e-01, ..., 8.9548e-01,
1.7218e-01, -6.3549e-02],
[ 8.3652e-02, 2.1827e-01, -4.1087e-01, ..., 8.0515e-01,
2.8648e-01, -4.0463e-02]]],
[[[-4.8236e-02, -2.9586e-02, 1.4862e-01, ..., 5.8172e-02,
-5.0443e-02, 1.9501e-01],
[ 4.8709e-02, 1.8268e-01, 2.6050e-01, ..., -2.4306e-01,
-7.4218e-02, 2.0313e-01],
[ 5.9480e-02, 2.6771e-01, 4.3760e-01, ..., -6.3749e-01,
-4.6659e-01, -3.4716e-01],
...,
[ 4.1737e-01, -5.6703e-01, -1.4684e+00, ..., -3.3145e-01,
-2.1022e-01, -2.4497e-01],
[ 3.3706e-01, -9.9801e-03, -1.1319e+00, ..., -7.3025e-01,
-1.7711e-01, -2.9828e-01],
[ 3.9671e-01, 1.1614e-01, -4.9124e-01, ..., -5.4504e-01,
-7.7301e-03, -1.3089e-01]],
[[ 3.0175e-02, 1.6488e-02, -1.4256e-02, ..., 2.1164e-01,
-1.2507e-01, 4.6381e-03],
[-1.9486e-02, 3.0499e-02, 9.1573e-02, ..., 2.7872e-02,
-2.9555e-02, 1.4699e-01],
[ 8.9091e-02, 2.6696e-02, -1.8950e-01, ..., 5.1870e-01,
2.5125e-01, 4.1237e-01],
...,
[-2.2371e-01, -3.8183e-01, -1.0706e+00, ..., -4.8319e-01,
-1.1171e-01, -1.8868e-01],
[-5.4057e-02, -1.7674e-01, -3.4005e-01, ..., -6.4595e-02,
-1.1097e-01, -2.1361e-01],
[-2.8810e-01, -3.9132e-01, -2.4705e-01, ..., 7.4987e-02,
5.7562e-02, -6.8132e-02]],
[[ 8.6585e-02, -1.3022e-01, -4.0973e-01, ..., -2.6427e-01,
-7.6284e-02, -8.0445e-02],
[ 1.9776e-01, 4.9115e-03, -4.6800e-01, ..., 7.3570e-02,
-1.1603e-01, -2.2852e-01],
[-1.2531e-03, 5.0595e-02, 3.3748e-02, ..., 4.3794e-01,
5.9591e-01, -3.1598e-01],
...,
[-1.1801e-01, 7.4536e-02, -4.2253e-01, ..., 2.2582e+00,
-5.1008e-01, -8.4858e-01],
[-3.0005e-01, 1.8628e-02, -2.8964e-01, ..., 1.1090e+00,
-2.0699e-02, -2.6316e-01],
[-1.9965e-01, -9.0140e-02, 3.1928e-01, ..., 2.4753e-01,
1.1536e-01, -7.2092e-02]],
...,
[[-1.3064e-01, 8.8274e-02, 4.4553e-01, ..., 1.0943e-01,
-1.1982e-01, -1.0819e-01],
[-2.2374e-02, 4.1778e-02, 2.7276e-01, ..., -1.3158e-01,
-4.3049e-02, 5.7812e-02],
[ 4.3195e-01, 3.5955e-01, -6.0783e-01, ..., -8.6985e-02,
2.3344e-01, 1.7606e-01],
...,
[ 1.0997e-01, -2.9960e-01, 7.7522e-01, ..., -7.6526e-01,
-7.4969e-01, -4.8915e-01],
[ 7.7136e-02, 9.8861e-02, -3.8172e-02, ..., -3.3207e-01,
-2.7570e-01, -6.0005e-02],
[ 2.9268e-03, 1.2287e-01, 1.7141e-01, ..., 6.7748e-02,
-2.9653e-01, -2.9938e-01]],
[[-2.9581e-01, -1.6831e-01, 4.3044e-02, ..., -1.4001e-01,
-4.9988e-02, 1.4783e-02],
[-3.3337e-02, -1.4255e-01, -2.9431e-01, ..., 8.0748e-02,
-1.9201e-02, 8.6632e-02],
[-9.7542e-02, -1.5204e-01, -4.6657e-01, ..., 2.6567e-01,
7.2280e-02, -2.6986e-01],
...,
[-2.2431e-01, -1.0231e-01, -1.2543e+00, ..., 5.2281e-01,
-2.6029e-01, -4.0956e-01],
[-3.7473e-02, -1.0534e-01, -4.2216e-01, ..., 4.8075e-01,
-9.7433e-02, -6.7837e-02],
[ 1.2422e-01, 2.3889e-03, 3.1974e-01, ..., 4.2763e-01,
2.2478e-01, -1.1080e-02]],
[[ 6.0220e-02, 1.2085e-02, 5.0718e-02, ..., 2.8320e-01,
1.0121e-01, -3.0089e-01],
[ 6.8593e-03, 2.8495e-02, 1.2168e-01, ..., 1.8969e-01,
9.6662e-03, -6.4513e-02],
[-1.2478e-01, 1.4937e-02, -3.7207e-01, ..., 4.7513e-01,
-1.8248e-01, 1.2553e-01],
...,
[ 8.0169e-02, -1.5569e-01, -1.4747e+00, ..., 5.7343e-01,
2.4659e-01, -8.3309e-03],
[ 2.2040e-01, -1.7805e-02, -7.8429e-01, ..., 9.1232e-01,
1.6582e-01, -5.9815e-02],
[ 8.7558e-02, 2.2698e-01, -3.9275e-01, ..., 8.2376e-01,
2.9159e-01, -5.6248e-02]]]], device='cuda:0',
grad_fn=<ViewBackward0>), tensor([[0.0625, 0.1875, 0.1875, 0.0625],
[0.1875, 0.5625, 0.5625, 0.1875],
[0.1875, 0.5625, 0.5625, 0.1875],
[0.0625, 0.1875, 0.1875, 0.0625]], device='cuda:0'); kwargs: pad=(1, 1)