Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

Related tags

Deep Learning VISO
Overview

Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This is the official website of the VISO (VIdeo Satellite Objects) dataset. [Download]

(1) Data

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms. Each image has a resolution of 12000x5000 and contains a great number of objects with different scales. Four common types of vechicles, including plane, car, ship, and train, are manually-labeled. A total of 853,911 instances are labeled by axis-aligned bounding boxes.

(2) Benchmark

We also build a new satellite video benchmark to fairly and extensively evaluate the performance of existing methods in several sub-tasks, including moving object detection, single-object tracking, and multi-object tracking.

  • Moving Object Detection:

  • Single Object Tracking:

  • Multiple Object Tracking:

(3) Demo

You might also like...
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Python TFLite scripts for detecting objects of any class in an image without knowing their label.
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

The official implementation code of
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Official implementation of Monocular Quasi-Dense 3D Object Tracking
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Comments
  • questions about SOT dataset

    questions about SOT dataset

    Hello, author. Recently I visualized the ground-truth images in the single object task test set 24 to 27, and found that some annotations are not very accurate, such as the first frame does not contain objects S0 %~ _LH RS_Z AX_R3QR , or there are some frames in the middle, the annotations directly become all 0, 5N OQYT15B)IOJY2 LK6E~Y and this There is nothing in the first frame frame, and there is no object in the subsequent frame, $@2W) J}JWJ7)P}FM)PGQ J and there is nothing in the whole sequence. There are also ground-truth, proving that my visualization code is fine. {CX}1O_GKA9`R5ZWG)3 54 _AT6C2S$DB)4V7`H{1R5LOI I would like to take the liberty to ask the author if something went wrong?

    opened by zhaoxingle 0
  • Questions about MOT results

    Questions about MOT results

    Thanks for your great work! I want to ask why the MOT results(Kalman Filter, SORT, et al.)is different in the paper and README page? In your paper Table IX, Kalman Filter reached 73.6 MOTA, whereas the result in README only reached 5.6. Which one should I refer to?

    opened by wht-bupt 0
  • Description of Videos

    Description of Videos

    When reading the paper and looking at the repo, it is unclear which videos are videos 1-7. Is there some place that I can go to see which video from the dataset is which?

    opened by ccrutchf 0
Owner
Qingyong
Ph.D. student :man_student: in the Department of Computer Science at the University of Oxford :cn:
Qingyong
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 6, 2023
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 5, 2023
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 1, 2023
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021