[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

Related tags

Deep Learning CKDN
Overview

CKDN

The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment"

screenshot 173

Our trained model can be found in Model

The PIPAL dataset can be found in Here; our matched degraded images can be downloaded in Here. Please put all images into one folder.

To train the model, please run:

bash train.sh

To evaluate the model, please run:

bash val.sh

To predict the quality score for an image/folder, please:

  1. put degraded images into 'data_folder/degraded' and restored images into 'data_folder/restored' (with the same file name).
  2. run: bash predict_score.sh

Credits

This code is based on pytorch-image-models

Citation

@article{zheng2021learning,
  title={Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment},
  author={Zheng, Heliang and Fu, Jianlong and Zeng, Yanhong and Zha, Zheng-Jun and Luo, Jiebo},
  journal={ICCV},
  year={2021}
}
You might also like...
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Official implementation of the paper
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email: 18186470991@163.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

[ICCV21] Self-Calibrating Neural Radiance Fields
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Comments
  • Some early degraded-reference based work

    Some early degraded-reference based work

    In fact, some previous studies have proposed the use of degraded images for quality evaluation. [1] No-reference image contrast evaluation by generating bi-directional pseudo references [2] Tspr: Deep network-basedblind image quality assessment using two-side pseudo reference images

    opened by XiaoqiWang 0
  • reference images were also used during the testing phase???

    reference images were also used during the testing phase???

    Hi, as seen in the train.py and ckdn.py files, the test phase also used reference images that were inconsistent with the original paper description. Or did I miss the right?

    opened by XiaoqiWang 0
Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 4, 2023
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 5, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python >=3.8.0 Pytorch >=1.7.1 Usage wit

null 7 Oct 13, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 5, 2023