CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

Overview

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans and the other way around. In addition, we introduce a novel data set, Coltea-Lung-CT-100W, containing 3D triphasic lung CT scans (with a total of 37,290 images) collected from 100 female patients.


map


Code for CyTran

We provide the code to reproduce our results for CT style transfer. The data set must be downloaded and preprocessed. Consequently, in options/base_options.py you should put the path to the data set. In the test.py script is the evaluation code.

The code is similar with CycleGan-and-pix2pix and could be used for any data sets (e.g. horse to zebra, cityscape). The scripts to download other data sets are in scripts directory.

Coltea-Lung-CT-100W Data Set

map

We release a novel data set entitled Coltea-Lung-CT-100W, which consists of 100 triphasic lung CT scans. The scans are collect from 100 female patients and represent the same body section. A triphasic scan is formed of a native (non-contrast) scan, an early portal venous scan, and a late arterial scan.

In our data set, the three CT scans forming a triphasic scan always have the same number of slices, but the number of slices may differ from one patient to another.

We split our data set into three subsets, one for training (75 scans), one for validation (15 scans), and one for testing (15 scans). Our data set is stored as anonymized raw DICOM files.

Coltea-Lung-CT-100W can be downloaded from: (link will be released after the acceptance of the submitted manuscript)

Prerequisites

  • Python > 3.6
  • PyTorch 1.7.x
  • CPU or NVIDIA GPU + CUDA CuDNN

Citation

TBA

Related Projects

cyclegan-pix2pix | ViT-V-Net | Recursive-Cascade-Networks

You can send your questions or suggestions to:

[email protected], [email protected]

Last Update:

October 13th, 2021

You might also like...
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Official Pytorch implementation of
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Robust Consistent Video Depth Estimation
Robust Consistent Video Depth Estimation

[CVPR 2021] Robust Consistent Video Depth Estimation This repository contains Python and C++ implementation of Robust Consistent Video Depth, as descr

Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

Official Repository for the ICCV 2021 paper
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Comments
  • Preprocessing data

    Preprocessing data

    Hi, Thank you so much about the great works!

    As I know in many GAN based methods, normalize input to range -1 1 is a tip for stable training but I do not see norm func in your CT-dataset. Could you explain that why you did not use this, plz?

    Thank you a lot and hope to hear from you soon. Best,

    opened by linhlpv 3
  • Bug when using nn.DataParallel

    Bug when using nn.DataParallel

    I have tried to use nn.DataParallel for training on multi GPUs. But I found a bug when adding nn.DataParallel on model image Have you ever faced with this bug? Thank you. Best,

    opened by linhlpv 2
Owner
Nicolae Catalin Ristea
Data Scientist
Nicolae Catalin Ristea
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 4, 2020
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

null 44 Sep 15, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python >= 3.7 Pytorch

null 117 Jan 9, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

null 87 Oct 19, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022