My implementation of transformers related papers for computer vision in pytorch

Overview

vision_transformers

This is my personnal repo to implement new transofrmers based and other computer vision DL models

I am currenlty working without a lot of GPU ressources therefore I mainly trained models on CIFAR 10. But my implementation are build to be fast and effective at scale.

Current paper implemented:

  • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, from Dosovitskiy et al (2020)
  • Patch Are All You Need ? anonymous

Baseline:

  • Deep Residual Learning for Image Recognition, from He et al (2015)

Models are implemented in pure pytorch and trained via pytorchlightning. Dependencies are managed by poetry. It is included an Dockerfile to create a cuda ready container with jupyter lab inside. On the development part, I use jupytext in order to avoid commit every metadata change on the notebook. Fully tested with pytest and formatted with black and isort.

If you want to create a project with similar config, just use my boilerplat.

How to use it ?

first install the dependecies:

poetry install

Then, only for development:

add the precommit hook

poetry run pre-commit install

sync the notebook (only once)

poetry shell
make notebook-sync

launch a jupyter lab session

poetry run jupyter lab

Use tensorboard

poetry shell
make tensorboard

Format the code without the precommit hook

poetry shell
make formatting

Tests:

to run the tests:

poetry shell
make tests
You might also like...
Build fully-functioning computer vision models with PyTorch
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Open Source Differentiable Computer Vision Library for PyTorch
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It orchestrates the end-to-end deep learning workflow allowing to train networks with easy-to-use robust high-performance libraries such as Pytorch-Lightning and Fastai

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Explainability for Vision Transformers (in PyTorch)
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Releases(0.1.0)
Owner
samsja
I am an machine learning engineer . Passionate by computer science and mathematics. Free-software enthusiast.
samsja
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 3, 2023
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 8, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 5, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

null 102 Dec 5, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 3, 2023
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

null 73 Jan 1, 2023
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 9, 2023
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ([email protected])}, howpubl

Donny You 40 Sep 14, 2022