Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Related tags

Text Data & NLP loa
Overview

Finding Label and Model Errors in Perception Data With Learned Observation Assertions

This is the project page for Finding Label and Model Errors in Perception Data With Learned Observation Assertions.

Please read the paper for full technical details.

Installation

In the root directory, run

pip install -e .

Examples

We provide an example of the Lyft Level 5 percetion dataset. We have provided model predictions for convenience, but you will need to download the dataset here.

All of the scripts are available in examples/lyft_level5. In order to run the scripts, do the following:

  1. Set the data directories in constants.py.
  2. Learn the priors with learn_priors.py.
  3. Run LOA with prior_lyft.py.

You can visualize the results with viz_track.py.

Citation

If you find this project useful, please cite us at

@article{kang2021finding,
  title={Finding Label and Model Errors in Perception Data With Learned Observation Assertions},
  author={Kang, Daniel and Arechiga, Nikos and Pillai, Sudeep and Bailis, Peter and Zaharia, Matei},
}

and contact us if you deploy LOA!

You might also like...
In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

TextAttack 🐙  is a Python framework for adversarial attacks, data augmentation, and model training in NLP
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

This repository contains data used in the NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deployment in Text to Speech Systems

Proteno This is the data release associated with the corresponding NAACL 2021 Paper - Proteno: Text Normalization with Limited Data for Fast Deploymen

This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Comments
  • Missing predictions from `preds.p`

    Missing predictions from `preds.p`

    Do you have a reference to the model predictions (or model parameters) that you used and serialized in preds.p. Or if you can't share that information, as much detail as possible about the model that you used, accuracy of the prediction model, and format of the prediction output file (preds.p)? It is currently hard to run the code/duplicate your results without those model predictions.

    opened by jonathanzhang99 2
  • [Setup] Update requirements.txt to include necessary

    [Setup] Update requirements.txt to include necessary

    The previous requirements.txt included direct references and packages that are needed in the dependency tree. Pruned to make sure that the dev environment is cleaner and easier.

    Tested with python 3.9.1. Ran setup with:

    python -m venv env
    source env/bin/activate
    pip install -r requirements.txt
    python examples/lyft_level5/learn_priors.py
    python examples/lyft_level5/prior_lyft.py
    
    opened by jonathanzhang99 2
Owner
Stanford Future Data Systems
We are a CS research group at Stanford building data-intensive systems
Stanford Future Data Systems
Saptak Bhoumik 14 May 24, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

null 14 Jan 3, 2023
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

null 186 Dec 24, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022