| Package | Change | Age | Adoption | Passing | Confidence |
|---|---|---|---|---|---|
| numpy (source) | ==1.19.0
-> ==1.22.3
| | | | |
numpy/numpy
Compare Source
NumPy 1.22.3 Release Notes
NumPy 1.22.3 is a maintenance release that fixes bugs discovered after
the 1.22.2 release. The most noticeable fixes may be those for DLPack.
One that may cause some problems is disallowing strings as inputs to
logical ufuncs. It is still undecided how strings should be treated in
those functions and it was thought best to simply disallow them until a
decision was reached. That should not cause problems with older code.
The Python versions supported for this release are 3.8-3.10. Note that
the Mac wheels are now based on OS X 10.14 rather than 10.9 that was
used in previous NumPy release cycles. 10.14 is the oldest release
supported by Apple.
Contributors
A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- @GalaxySnail +
- Alexandre de Siqueira
- Bas van Beek
- Charles Harris
- Melissa Weber Mendonça
- Ross Barnowski
- Sebastian Berg
- Tirth Patel
- Matthieu Darbois
Pull requests merged
A total of 10 pull requests were merged for this release.
- #21048: MAINT: Use "3.10" instead of "3.10-dev" on travis.
- #21106: TYP,MAINT: Explicitly allow sequences of array-likes in
np.concatenate
- #21137: BLD,DOC: skip broken ipython 8.1.0
- #21138: BUG, ENH: np._from_dlpack: export correct device information
- #21139: BUG: Fix numba DUFuncs added loops getting picked up
- #21140: BUG: Fix unpickling an empty ndarray with a non-zero dimension...
- #21141: BUG: use ThreadPoolExecutor instead of ThreadPool
- #21142: API: Disallow strings in logical ufuncs
- #21143: MAINT, DOC: Fix SciPy intersphinx link
- #21148: BUG,ENH: np._from_dlpack: export arrays with any strided size-1...
Checksums
MD5
14f1872bbab050b0579e5fcd8b341b81 numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
c673faa3ac8745ad10ed0428a21a77aa numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
d925fff720561673fd7ee8ead0e94935 numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
319f97f5ee26b9c3c06f7a2a3df412a3 numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
866eae5dba934cad50eb38c8505c8449 numpy-1.22.3-cp310-cp310-win32.whl
e4c512437a6d4eb4a384225861067ad8 numpy-1.22.3-cp310-cp310-win_amd64.whl
a28052af37037f0d5c3b47f4a7040135 numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
d22dc074bde64f6e91a2d1990345f821 numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
e8a01c2ca1474aff142366a0a2fe0812 numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4fe6e71e7871cb31ffc4122aa5707be7 numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1273fb3c77383ab28f2fb05192751340 numpy-1.22.3-cp38-cp38-win32.whl
001244a6bafa640d7509c85661a4e98e numpy-1.22.3-cp38-cp38-win_amd64.whl
b8694b880a1a68d1716f60a9c9e82b38 numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
ba122eaa0988801e250f8674e3dd612e numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
3641825aca07cb26732425e52d034daf numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f92412e4273c2580abcc1b75c56e9651 numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b38604778ffd0a17931c06738c3ce9ed numpy-1.22.3-cp39-cp39-win32.whl
644e0b141fa36a1baf0338032254cc9a numpy-1.22.3-cp39-cp39-win_amd64.whl
99d2dfb943327b108b2c3b923bd42000 numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3305c27e5bdf7f19247a7eee00ac053e numpy-1.22.3.tar.gz
b56530be068796a50bf5a09105c8011e numpy-1.22.3.zip
SHA256
92bfa69cfbdf7dfc3040978ad09a48091143cffb778ec3b03fa170c494118d75 numpy-1.22.3-cp310-cp310-macosx_10_14_x86_64.whl
8251ed96f38b47b4295b1ae51631de7ffa8260b5b087808ef09a39a9d66c97ab numpy-1.22.3-cp310-cp310-macosx_11_0_arm64.whl
48a3aecd3b997bf452a2dedb11f4e79bc5bfd21a1d4cc760e703c31d57c84b3e numpy-1.22.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a3bae1a2ed00e90b3ba5f7bd0a7c7999b55d609e0c54ceb2b076a25e345fa9f4 numpy-1.22.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f950f8845b480cffe522913d35567e29dd381b0dc7e4ce6a4a9f9156417d2430 numpy-1.22.3-cp310-cp310-win32.whl
08d9b008d0156c70dc392bb3ab3abb6e7a711383c3247b410b39962263576cd4 numpy-1.22.3-cp310-cp310-win_amd64.whl
201b4d0552831f7250a08d3b38de0d989d6f6e4658b709a02a73c524ccc6ffce numpy-1.22.3-cp38-cp38-macosx_10_14_x86_64.whl
f8c1f39caad2c896bc0018f699882b345b2a63708008be29b1f355ebf6f933fe numpy-1.22.3-cp38-cp38-macosx_11_0_arm64.whl
568dfd16224abddafb1cbcce2ff14f522abe037268514dd7e42c6776a1c3f8e5 numpy-1.22.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3ca688e1b9b95d80250bca34b11a05e389b1420d00e87a0d12dc45f131f704a1 numpy-1.22.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e7927a589df200c5e23c57970bafbd0cd322459aa7b1ff73b7c2e84d6e3eae62 numpy-1.22.3-cp38-cp38-win32.whl
07a8c89a04997625236c5ecb7afe35a02af3896c8aa01890a849913a2309c676 numpy-1.22.3-cp38-cp38-win_amd64.whl
2c10a93606e0b4b95c9b04b77dc349b398fdfbda382d2a39ba5a822f669a0123 numpy-1.22.3-cp39-cp39-macosx_10_14_x86_64.whl
fade0d4f4d292b6f39951b6836d7a3c7ef5b2347f3c420cd9820a1d90d794802 numpy-1.22.3-cp39-cp39-macosx_11_0_arm64.whl
5bfb1bb598e8229c2d5d48db1860bcf4311337864ea3efdbe1171fb0c5da515d numpy-1.22.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
97098b95aa4e418529099c26558eeb8486e66bd1e53a6b606d684d0c3616b168 numpy-1.22.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fdf3c08bce27132395d3c3ba1503cac12e17282358cb4bddc25cc46b0aca07aa numpy-1.22.3-cp39-cp39-win32.whl
639b54cdf6aa4f82fe37ebf70401bbb74b8508fddcf4797f9fe59615b8c5813a numpy-1.22.3-cp39-cp39-win_amd64.whl
c34ea7e9d13a70bf2ab64a2532fe149a9aced424cd05a2c4ba662fd989e3e45f numpy-1.22.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a906c0b4301a3d62ccf66d058fe779a65c1c34f6719ef2058f96e1856f48bca5 numpy-1.22.3.tar.gz
dbc7601a3b7472d559dc7b933b18b4b66f9aa7452c120e87dfb33d02008c8a18 numpy-1.22.3.zip
Compare Source
NumPy 1.22.2 Release Notes
The NumPy 1.22.2 is maintenance release that fixes bugs discovered after
the 1.22.1 release. Notable fixes are:
- Several build related fixes for downstream projects and other
platforms.
- Various Annotation fixes/additions.
- Numpy wheels for Windows will use the 1.41 tool chain, fixing
downstream link problems for projects using NumPy provided libraries
on Windows.
- Deal with CVE-2021-41495 complaint.
The Python versions supported for this release are 3.8-3.10.
Contributors
A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Andrew J. Hesford +
- Bas van Beek
- Brénainn Woodsend +
- Charles Harris
- Hood Chatham
- Janus Heide +
- Leo Singer
- Matti Picus
- Mukulika Pahari
- Niyas Sait
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
- Serge Guelton
Pull requests merged
A total of 21 pull requests were merged for this release.
- #20842: BLD: Add NPY_DISABLE_SVML env var to opt out of SVML
- #20843: BUG: Fix build of third party extensions with Py_LIMITED_API
- #20844: TYP: Fix pyright being unable to infer the
real
and imag
...
- #20845: BUG: Fix comparator function signatures
- #20906: BUG: Avoid importing
numpy.distutils
on import numpy.testing
- #20907: MAINT: remove outdated mingw32 fseek support
- #20908: TYP: Relax the return type of
np.vectorize
- #20909: BUG: fix f2py's define for threading when building with Mingw
- #20910: BUG: distutils: fix building mixed C/Fortran extensions
- #20912: DOC,TST: Fix Pandas code example as per new release
- #20935: TYP, MAINT: Add annotations for
flatiter.__setitem__
- #20936: MAINT, TYP: Added missing where typehints in
fromnumeric.pyi
- #20937: BUG: Fix build_ext interaction with non numpy extensions
- #20938: BUG: Fix missing intrinsics for windows/arm64 target
- #20945: REL: Prepare for the NumPy 1.22.2 release.
- #20982: MAINT: f2py: don't generate code that triggers
-Wsometimes-uninitialized
.
- #20983: BUG: Fix incorrect return type in reduce without initial value
- #20984: ENH: review return values for PyArray_DescrNew
- #20985: MAINT: be more tolerant of setuptools >= 60
- #20986: BUG: Fix misplaced return.
- #20992: MAINT: Further small return value validation fixes
Checksums
MD5
2319f8d7c629d0ba3d3d3b1d5605d494 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
023c01a6d3aa528f8e88b0837dcab7ed numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
84b36e8893b811d17a19404c68db7ce6 numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
744da9614e8272a384b542d129cd17a9 numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ee012ed5e7c98c6f48026dfa818b2274 numpy-1.22.2-cp310-cp310-win_amd64.whl
73e4fdcf398327bc4241dc38b6d10211 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
9fcbca2a614af3b9a37456643ab1c99d numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
b7e0d4a19867d33765c7187d1390eef4 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc8d79d75588737ea77fe85a4f05365a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
05906141c095148c53c043c381e6fabe numpy-1.22.2-cp38-cp38-win32.whl
05d3b6d34c0fa031e69ec0476e8d4c9c numpy-1.22.2-cp38-cp38-win_amd64.whl
1449889d856de0e88437fa76d3284e00 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
e25666ab6ec0692368f328b7b98c27a3 numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
59e3013894bcc6267054c746d9339cf8 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7606b9898c20d2b2aa7fc7018bc9c5cd numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
2686a1495c620e85842967bf8a5f1b2f numpy-1.22.2-cp39-cp39-win32.whl
54432a84807ab69ac3432e6090d5a169 numpy-1.22.2-cp39-cp39-win_amd64.whl
4dbecace42595742485b854b213341b6 numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5b506b01ef454f39272ca75de1c7f61c numpy-1.22.2.tar.gz
a903008d992b77cb68129173c0f61f60 numpy-1.22.2.zip
SHA256
515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956 numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7 numpy-1.22.2-cp310-cp310-win_amd64.whl
55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2 numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89 numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896 numpy-1.22.2-cp38-cp38-win32.whl
03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f numpy-1.22.2-cp38-cp38-win_amd64.whl
d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677 numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082 numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6 numpy-1.22.2-cp39-cp39-win32.whl
59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f numpy-1.22.2-cp39-cp39-win_amd64.whl
4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
093d513a460fd94f94c16193c3ef29b2d69a33e482071e3d6d6e561a700587a6 numpy-1.22.2.tar.gz
076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf numpy-1.22.2.zip
Compare Source
NumPy 1.22.1 Release Notes
The NumPy 1.22.1 is maintenance release that fixes bugs discovered after
the 1.22.0 release. Notable fixes are:
- Fix f2PY docstring problems (SciPy)
- Fix reduction type problems (AstroPy)
- Fix various typing bugs.
The Python versions supported for this release are 3.8-3.10.
Contributors
A total of 14 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Arryan Singh
- Bas van Beek
- Charles Harris
- Denis Laxalde
- Isuru Fernando
- Kevin Sheppard
- Matthew Barber
- Matti Picus
- Melissa Weber Mendonça
- Mukulika Pahari
- Omid Rajaei +
- Pearu Peterson
- Ralf Gommers
- Sebastian Berg
Pull requests merged
A total of 20 pull requests were merged for this release.
- #20702: MAINT, DOC: Post 1.22.0 release fixes.
- #20703: DOC, BUG: Use pngs instead of svgs.
- #20704: DOC: Fixed the link on user-guide landing page
- #20714: BUG: Restore vc141 support
- #20724: BUG: Fix array dimensions solver for multidimensional arguments...
- #20725: TYP: change type annotation for
__array_namespace__
to ModuleType
- #20726: TYP, MAINT: Allow
ndindex
to accept integer tuples
- #20757: BUG: Relax dtype identity check in reductions
- #20763: TYP: Allow time manipulation functions to accept
date
and timedelta
...
- #20768: TYP: Relax the type of
ndarray.__array_finalize__
- #20795: MAINT: Raise RuntimeError if setuptools version is too recent.
- #20796: BUG, DOC: Fixes SciPy docs build warnings
- #20797: DOC: fix OpenBLAS version in release note
- #20798: PERF: Optimize array check for bounded 0,1 values
- #20805: BUG: Fix that reduce-likes honor out always (and live in the...
- #20806: BUG:
array_api.argsort(descending=True)
respects relative...
- #20807: BUG: Allow integer inputs for pow-related functions in
array_api
- #20814: DOC: Refer to NumPy, not pandas, in main page
- #20815: DOC: Update Copyright to 2022 [License]
- #20819: BUG: Return correctly shaped inverse indices in array_api set...
Checksums
MD5
8edd68c8998cb694e244ce793b2d088c numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
e4858aafd41cdba76cd14161bfc512c3 numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
96f4fc3f321625278ca3807c7c8c789c numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
2ddc25b9c9d7b517610689055f9f553a numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8d40c6fd64389c05646b5ef95cded6e5 numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1a8359c6436d1bcfe84a094337903a48 numpy-1.22.1-cp310-cp310-win_amd64.whl
033f9aa72a732646f3fb4563226320ee numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
59e13abecdf4194f75b654f1d853b244 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
3ce885a0c10e95f5756d7c1878eaa246 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
546b2a0866561673d5b7eadcc086af24 numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
200c0a7bc3a24cfa6f4358d7274b5535 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
defe48b3b5f44c3991e830f7cde0a79c numpy-1.22.1-cp38-cp38-win32.whl
15557a847a78bcbf651ca6689ae37935 numpy-1.22.1-cp38-cp38-win_amd64.whl
067e734594c67d8141190b7eabb979ee numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
1458d42b26da341baaee134d85e3fd70 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
463b365c80efffd807194c78b4796235 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
58d8dc02dd884898c1b7ee1bee1dd216 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
48e2d2905822f78a96d400c78bd16cbb numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c5059bd82d8f2c509c889fba09251307 numpy-1.22.1-cp39-cp39-win32.whl
eb9a0655d16897f0adf6ea53b9f3bda4 numpy-1.22.1-cp39-cp39-win_amd64.whl
74cb5dba2f37dc445ffd3068eb1d58fe numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
90fff1ee7c7f843fc7a234addc70c71c numpy-1.22.1.tar.gz
c25dad73053350dd0278605d8ed8a5c7 numpy-1.22.1.zip
SHA256
3d62d6b0870b53799204515145935608cdeb4cebb95a26800b6750e48884cc5b numpy-1.22.1-cp310-cp310-macosx_10_9_universal2.whl
831f2df87bd3afdfc77829bc94bd997a7c212663889d56518359c827d7113b1f numpy-1.22.1-cp310-cp310-macosx_10_9_x86_64.whl
8d1563060e77096367952fb44fca595f2b2f477156de389ce7c0ade3aef29e21 numpy-1.22.1-cp310-cp310-macosx_11_0_arm64.whl
69958735d5e01f7b38226a6c6e7187d72b7e4d42b6b496aca5860b611ca0c193 numpy-1.22.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
45a7dfbf9ed8d68fd39763940591db7637cf8817c5bce1a44f7b56c97cbe211e numpy-1.22.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7e957ca8112c689b728037cea9c9567c27cf912741fabda9efc2c7d33d29dfa1 numpy-1.22.1-cp310-cp310-win_amd64.whl
800dfeaffb2219d49377da1371d710d7952c9533b57f3d51b15e61c4269a1b5b numpy-1.22.1-cp38-cp38-macosx_10_9_universal2.whl
65f5e257987601fdfc63f1d02fca4d1c44a2b85b802f03bd6abc2b0b14648dd2 numpy-1.22.1-cp38-cp38-macosx_10_9_x86_64.whl
632e062569b0fe05654b15ef0e91a53c0a95d08ffe698b66f6ba0f927ad267c2 numpy-1.22.1-cp38-cp38-macosx_11_0_arm64.whl
0d245a2bf79188d3f361137608c3cd12ed79076badd743dc660750a9f3074f7c numpy-1.22.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
26b4018a19d2ad9606ce9089f3d52206a41b23de5dfe8dc947d2ec49ce45d015 numpy-1.22.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8ad59e6e341f38266f1549c7c2ec70ea0e3d1effb62a44e5c3dba41c55f0187 numpy-1.22.1-cp38-cp38-win32.whl
60f19c61b589d44fbbab8ff126640ae712e163299c2dd422bfe4edc7ec51aa9b numpy-1.22.1-cp38-cp38-win_amd64.whl
2db01d9838a497ba2aa9a87515aeaf458f42351d72d4e7f3b8ddbd1eba9479f2 numpy-1.22.1-cp39-cp39-macosx_10_9_universal2.whl
bcd19dab43b852b03868796f533b5f5561e6c0e3048415e675bec8d2e9d286c1 numpy-1.22.1-cp39-cp39-macosx_10_9_x86_64.whl
78bfbdf809fc236490e7e65715bbd98377b122f329457fffde206299e163e7f3 numpy-1.22.1-cp39-cp39-macosx_11_0_arm64.whl
c51124df17f012c3b757380782ae46eee85213a3215e51477e559739f57d9bf6 numpy-1.22.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88d54b7b516f0ca38a69590557814de2dd638d7d4ed04864826acaac5ebb8f01 numpy-1.22.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b5ec9a5eaf391761c61fd873363ef3560a3614e9b4ead17347e4deda4358bca4 numpy-1.22.1-cp39-cp39-win32.whl
4ac4d7c9f8ea2a79d721ebfcce81705fc3cd61a10b731354f1049eb8c99521e8 numpy-1.22.1-cp39-cp39-win_amd64.whl
e60ef82c358ded965fdd3132b5738eade055f48067ac8a5a8ac75acc00cad31f numpy-1.22.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
dd1968402ae20dfd59b34acd799b494be340c774f6295e9bf1c2b9842a5e416d numpy-1.22.1.tar.gz
e348ccf5bc5235fc405ab19d53bec215bb373300e5523c7b476cc0da8a5e9973 numpy-1.22.1.zip
Compare Source
NumPy 1.22.0 Release Notes
NumPy 1.22.0 is a big release featuring the work of 153 contributors
spread over 609 pull requests. There have been many improvements,
highlights are:
- Annotations of the main namespace are essentially complete. Upstream
is a moving target, so there will likely be further improvements,
but the major work is done. This is probably the most user visible
enhancement in this release.
- A preliminary version of the proposed Array-API is provided. This is
a step in creating a standard collection of functions that can be
used across application such as CuPy and JAX.
- NumPy now has a DLPack backend. DLPack provides a common interchange
format for array (tensor) data.
- New methods for
quantile
, percentile
, and related functions. The
new methods provide a complete set of the methods commonly found in
the literature.
- A new configurable allocator for use by downstream projects.
These are in addition to the ongoing work to provide SIMD support for
commonly used functions, improvements to F2PY, and better documentation.
The Python versions supported in this release are 3.8-3.10, Python 3.7
has been dropped. Note that 32 bit wheels are only provided for Python
3.8 and 3.9 on Windows, all other wheels are 64 bits on account of
Ubuntu, Fedora, and other Linux distributions dropping 32 bit support.
All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix
the occasional problems encountered by folks using truly huge arrays.
Expired deprecations
Deprecated numeric style dtype strings have been removed
Using the strings "Bytes0"
, "Datetime64"
, "Str0"
, "Uint32"
,
and "Uint64"
as a dtype will now raise a TypeError
.
(gh-19539)
Expired deprecations for loads
, ndfromtxt
, and mafromtxt
in npyio
numpy.loads
was deprecated in v1.15, with the recommendation that
users use pickle.loads
instead. ndfromtxt
and mafromtxt
were both
deprecated in v1.17 - users should use numpy.genfromtxt
instead with
the appropriate value for the usemask
parameter.
(gh-19615)
Deprecations
Use delimiter rather than delimitor as kwarg in mrecords
The misspelled keyword argument delimitor
of
numpy.ma.mrecords.fromtextfile()
has been changed to delimiter
,
using it will emit a deprecation warning.
(gh-19921)
Passing boolean kth
values to (arg-)partition has been deprecated
numpy.partition
and numpy.argpartition
would previously accept
boolean values for the kth
parameter, which would subsequently be
converted into integers. This behavior has now been deprecated.
(gh-20000)
The np.MachAr
class has been deprecated
The numpy.MachAr
class and finfo.machar <numpy.finfo>
attribute have
been deprecated. Users are encouraged to access the property if interest
directly from the corresponding numpy.finfo
attribute.
(gh-20201)
Compatibility notes
Distutils forces strict floating point model on clang
NumPy now sets the -ftrapping-math
option on clang to enforce correct
floating point error handling for universal functions. Clang defaults to
non-IEEE and C99 conform behaviour otherwise. This change (using the
equivalent but newer -ffp-exception-behavior=strict
) was attempted in
NumPy 1.21, but was effectively never used.
(gh-19479)
Removed floor division support for complex types
Floor division of complex types will now result in a TypeError
>>> a = np.arange(10) + 1j* np.arange(10)
>>> a // 1
TypeError: ufunc 'floor_divide' not supported for the input types...
(gh-19135)
numpy.vectorize
functions now produce the same output class as the base function
When a function that respects numpy.ndarray
subclasses is vectorized
using numpy.vectorize
, the vectorized function will now be
subclass-safe also for cases that a signature is given (i.e., when
creating a gufunc
): the output class will be the same as that returned
by the first call to the underlying function.
(gh-19356)
Python 3.7 is no longer supported
Python support has been dropped. This is rather strict, there are
changes that require Python >= 3.8.
(gh-19665)
str/repr of complex dtypes now include space after punctuation
The repr of
np.dtype({"names": ["a"], "formats": [int], "offsets": [2]})
is now
dtype({'names': ['a'], 'formats': ['<i8'], 'offsets': [2], 'itemsize': 10})
,
whereas spaces where previously omitted after colons and between fields.
The old behavior can be restored via
np.set_printoptions(legacy="1.21")
.
(gh-19687)
Corrected advance
in PCG64DSXM
and PCG64
Fixed a bug in the advance
method of PCG64DSXM
and PCG64
. The bug
only affects results when the step was larger than $2^{64}$ on platforms
that do not support 128-bit integers(e.g., Windows and 32-bit Linux).
(gh-20049)
Change in generation of random 32 bit floating point variates
There was bug in the generation of 32 bit floating point values from the
uniform distribution that would result in the least significant bit of
the random variate always being 0. This has been fixed.
This change affects the variates produced by the random.Generator
methods random
, standard_normal
, standard_exponential
, and
standard_gamma
, but only when the dtype is specified as
numpy.float32
.
(gh-20314)
C API changes
Masked inner-loops cannot be customized anymore
The masked inner-loop selector is now never used. A warning will be
given in the unlikely event that it was customized.
We do not expect that any code uses this. If you do use it, you must
unset the selector on newer NumPy version. Please also contact the NumPy
developers, we do anticipate providing a new, more specific, mechanism.
The customization was part of a never-implemented feature to allow for
faster masked operations.
(gh-19259)
New Features
NEP 49 configurable allocators
As detailed in NEP 49, the
function used for allocation of the data segment of a ndarray can be
changed. The policy can be set globally or in a context. For more
information see the NEP and the data_memory
{.interpreted-text
role="ref"} reference docs. Also add a NUMPY_WARN_IF_NO_MEM_POLICY
override to warn on dangerous use of transfering ownership by setting
NPY_ARRAY_OWNDATA
.
(gh-17582)
Implementation of the NEP 47 (adopting the array API standard)
An initial implementation of NEP47, adoption
of the array API standard, has been added as numpy.array_api
. The
implementation is experimental and will issue a UserWarning on import,
as the array API standard is still in
draft state. numpy.array_api
is a conforming implementation of the
array API standard, which is also minimal, meaning that only those
functions and behaviors that are required by the standard are
implemented (see the NEP for more info). Libraries wishing to make use
of the array API standard are encouraged to use numpy.array_api
to
check that they are only using functionality that is guaranteed to be
present in standard conforming implementations.
(gh-18585)
Generate C/C++ API reference documentation from comments blocks is now possible
This feature depends on Doxygen in
the generation process and on
Breathe to integrate it
with Sphinx.
(gh-18884)
Assign the platform-specific c_intp
precision via a mypy plugin
The mypy plugin, introduced in
numpy/numpy#17843, has
again been expanded: the plugin now is now responsible for setting the
platform-specific precision of numpy.ctypeslib.c_intp
, the latter
being used as data type for various numpy.ndarray.ctypes
attributes.
Without the plugin, aforementioned type will default to
ctypes.c_int64
.
To enable the plugin, one must add it to their mypy configuration
file:
[mypy]
plugins = numpy.typing.mypy_plugin
(gh-19062)
Add NEP 47-compatible dlpack support
Add a ndarray.__dlpack__()
method which returns a dlpack
C structure
wrapped in a PyCapsule
. Also add a np._from_dlpack(obj)
function,
where obj
supports __dlpack__()
, and returns an ndarray
.
(gh-19083)
keepdims
optional argument added to numpy.argmin
, numpy.argmax
keepdims
argument is added to numpy.argmin
, numpy.argmax
. If set
to True
, the axes which are reduced are left in the result as
dimensions with size one. The resulting array has the same number of
dimensions and will broadcast with the input array.
(gh-19211)
bit_count
to compute the number of 1-bits in an integer
Computes the number of 1-bits in the absolute value of the input. This
works on all the numpy integer types. Analogous to the builtin
int.bit_count
or popcount
in C++.
>>> np.uint32(1023).bit_count()
10
>>> np.int32(-127).bit_count()
7
(gh-19355)
The ndim
and axis
attributes have been added to numpy.AxisError
The ndim
and axis
parameters are now also stored as attributes
within each numpy.AxisError
instance.
(gh-19459)
Preliminary support for windows/arm64
target
numpy
added support for windows/arm64 target. Please note OpenBLAS
support is not yet available for windows/arm64 target.
(gh-19513)
Added support for LoongArch
LoongArch is a new instruction set, numpy compilation failure on
LoongArch architecture, so add the commit.
(gh-19527)
A .clang-format
file has been added
Clang-format is a C/C++ code formatter, together with the added
.clang-format
file, it produces code close enough to the NumPy
C_STYLE_GUIDE for general use. Clang-format version 12+ is required
due to the use of several new features, it is available in Fedora 34 and
Ubuntu Focal among other distributions.
(gh-19754)
is_integer
is now available to numpy.floating
and numpy.integer
Based on its counterpart in Python float
and int
, the numpy floating
point and integer types now support float.is_integer
. Returns True
if the number is finite with integral value, and False
otherwise.
>>> np.float32(-2.0).is_integer()
True
>>> np.float64(3.2).is_integer()
False
>>> np.int32(-2).is_integer()
True
(gh-19803)
Symbolic parser for Fortran dimension specifications
A new symbolic parser has been added to f2py in order to correctly parse
dimension specifications. The parser is the basis for future
improvements and provides compatibility with Draft Fortran 202x.
(gh-19805)
ndarray
, dtype
and number
are now runtime-subscriptable
Mimicking PEP-585, the numpy.ndarray
,
numpy.dtype
and numpy.number
classes are now subscriptable for
python 3.9 and later. Consequently, expressions that were previously
only allowed in .pyi stub files or with the help of
from __future__ import annotations
are now also legal during runtime.
>>> import numpy as np
>>> from typing import Any
>>> np.ndarray[Any, np.dtype[np.float64]]
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
(gh-19879)
Improvements
ctypeslib.load_library
can now take any path-like object
All parameters in the can now take any
python:path-like object
{.interpreted-text role="term"}. This includes
the likes of strings, bytes and objects implementing the
__fspath__<os.PathLike.__fspath__>
{.interpreted-text role="meth"}
protocol.
(gh-17530)
Add smallest_normal
and smallest_subnormal
attributes to finfo
The attributes smallest_normal
and smallest_subnormal
are available
as an extension of finfo
class for any floating-point data type. To
use these new attributes, write np.finfo(np.float64).smallest_normal
or np.finfo(np.float64).smallest_subnormal
.
(gh-18536)
numpy.linalg.qr
accepts stacked matrices as inputs
numpy.linalg.qr
is able to produce results for stacked matrices as
inputs. Moreover, the implementation of QR decomposition has been
shifted to C from Python.
(gh-19151)
numpy.fromregex
now accepts os.PathLike
implementations
numpy.fromregex
now accepts objects implementing the
__fspath__<os.PathLike>
protocol, e.g. pathlib.Path
.
(gh-19680)
Add new methods for quantile
and percentile
quantile
and percentile
now have have a method=
keyword argument
supporting 13 different methods. This replaces the interpolation=
keyword argument.
The methods are now aligned with nine methods which can be found in
scientific literature and the R language. The remaining methods are the
previous discontinuous variations of the default "linear" one.
Please see the documentation of numpy.percentile
for more information.
(gh-19857)
Missing parameters have been added to the nan<x>
functions
A number of the nan<x>
functions previously lacked parameters that
were present in their <x>
-based counterpart, e.g. the where
parameter was present in numpy.mean
but absent from numpy.nanmean
.
The following parameters have now been added to the nan<x>
functions:
- nanmin:
initial
& where
- nanmax:
initial
& where
- nanargmin:
keepdims
& out
- nanargmax:
keepdims
& out
- nansum:
initial
& where
- nanprod:
initial
& where
- nanmean:
where
- nanvar:
where
- nanstd:
where
(gh-20027)
Annotating the main Numpy namespace
Starting from the 1.20 release, PEP 484 type annotations have been
included for parts of the NumPy library; annotating the remaining
functions being a work in progress. With the release of 1.22 this
process has been completed for the main NumPy namespace, which is now
fully annotated.
Besides the main namespace, a limited number of sub-packages contain
annotations as well. This includes, among others, numpy.testing
,
numpy.linalg
and numpy.random
(available since 1.21).
(gh-20217)
Vectorize umath module using AVX-512
By leveraging Intel Short Vector Math Library (SVML), 18 umath functions
(exp2
, log2
, log10
, expm1
, log1p
, cbrt
, sin
, cos
, tan
,
arcsin
, arccos
, arctan
, sinh
, cosh
, tanh
, arcsinh
,
arccosh
, arctanh
) are vectorized using AVX-512 instruction set for
both single and double precision implementations. This change is
currently enabled only for Linux users and on processors with AVX-512
instruction set. It provides an average speed up of 32x and 14x for
single and double precision functions respectively.
(gh-19478)
OpenBLAS v0.3.18
Update the OpenBLAS used in testing and in wheels to v0.3.18
(gh-20058)
Checksums
MD5
66757b963ad5835038b9a2a9df852c84 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
86b7f3a94c09dbd6869614c4d7f9ba5e numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5184db17d8e5e6ecdc53e2f0a6964c35 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
6643e9a076cce736cfbe15face4db9db numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6efef45bf63594703c094b2ad729e648 numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a1a21bb0958a3eb920deeef9e745935 numpy-1.22.0-cp310-cp310-win_amd64.whl
45241fb5f31ea46e2b6f1321a63c8e1c numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
472f24a5d35116634fcc57e9bda899bc numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
6c15cf7847b20101ae281ade6121b79e numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
313f0fd99a899a7465511c1418e1031f numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9ae6ecde0cbeadd2a9d7b8ae54285863 numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0f31a7b9e128b0cdafecf98cf1301fc0 numpy-1.22.0-cp38-cp38-win32.whl
f4b45579cf532ea632b890b1df387081 numpy-1.22.0-cp38-cp38-win_amd64.whl
2cb27112b11c16f700e6019f5fd36408 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
4554a5797a4cb787b5169a8f5482fb95 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
3780decd94837da6f0816f2feaace9c2 numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
6e519dd5205510dfebcadc6f7fdf9738 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
89d455bf290f459a70c57620f02d5b69 numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6425f8d7dc779a54b8074e198cea43c9 numpy-1.22.0-cp39-cp39-win32.whl
1b5c670328146975b21b54fa5ef8ec4c numpy-1.22.0-cp39-cp39-win_amd64.whl
05d842127ca85cca12fed3a26b0f5177 numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab751b8d4195f91ae61a402184d16d18 numpy-1.22.0.tar.gz
252de134862a27bd66705d29622edbfe numpy-1.22.0.zip
SHA256
3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559 numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d numpy-1.22.0-cp310-cp310-win_amd64.whl
bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9 numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471 numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982 numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383 numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5 numpy-1.22.0-cp38-cp38-win32.whl
2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f numpy-1.22.0-cp38-cp38-win_amd64.whl
76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88 numpy-1.22.0-cp39-cp39-win32.whl
a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c numpy-1.22.0-cp39-cp39-win_amd64.whl
bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2be14ba396780a6f662b8ba1a24466c9cf18a6a386174f614668e58387a13d7 numpy-1.22.0.tar.gz
a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397 numpy-1.22.0.zip
Compare Source
NumPy 1.21.6 Release Notes
NumPy 1.21.6 is a very small release that achieves two things:
- Backs out the mistaken backport of C++ code into 1.21.5.
- Provides a 32 bit Windows wheel for Python 3.10.
The provision of the 32 bit wheel is intended to make life easier for
oldest-supported-numpy.
Checksums
MD5
5a3e5d7298056bcfbc3246597af474d4 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
d981d2859842e7b62dc93e24808c7bac numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
171313893c26529404d09fadb3537ed3 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
5a7a6dfdd43069f9b29d3fe6b7f3a2ce numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a9e25375a72725c5d74442eda53af405 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6f9a782477380b2cdb7606f6f7634c00 numpy-1.21.6-cp310-cp310-win32.whl
32a73a348864700a3fa510d2fc4350b7 numpy-1.21.6-cp310-cp310-win_amd64.whl
0db8941ebeb0a02cd839d9cd3c5c20bb numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67882155be9592850861f4ad8ba36623 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
c70e30e1ff9ab49f898c19e7a6492ae6 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e32dbd291032c7554a742f1bb9b2f7a3 numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
689bf804c2cd16cb241fd943e3833ffd numpy-1.21.6-cp37-cp37m-win32.whl
0062a7b0231a07cb5b9f3d7c495e6fe4 numpy-1.21.6-cp37-cp37m-win_amd64.whl
0d08809980ab497659e7aa0df9ce120e numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
3c67d14ea2009069844b27bfbf74304d numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
5f0e773745cb817313232ac1bf4c7eee numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
fa8011e065f1964d3eb870bb3926fc99 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
486cf9d4daab59aad253aa5b84a5aa83 numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
88509abab303c076dfb26f00e455180d numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f7234e2ef837f5f6ddbde8db246fd05b numpy-1.21.6-cp38-cp38-win32.whl
e1063e01fb44ea7a49adea0c33548217 numpy-1.21.6-cp38-cp38-win_amd64.whl
61c4caad729e3e0e688accbc1424ed45 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67488d8ccaeff798f2e314aae7c4c3d6 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
128c3713b5d1de45a0f522562bac5263 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
50e79cd0610b4ed726b3bf08c3716dab numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bd0c9e3c0e488faac61daf3227fb95af numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
aa5e9baf1dec16b15e481c23f8a23214 numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a2405b0e5d3f775ad30177296a997092 numpy-1.21.6-cp39-cp39-win32.whl
f0d20eda8c78f957ea70c5527954303e numpy-1.21.6-cp39-cp39-win_amd64.whl
9682abbcc38cccb7f56e48aacca7de23 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
6aa3c2e8ea2886bf593bd8e0a1425c64 numpy-1.21.6.tar.gz
04aea95dcb1d256d13a45df42173aa1e numpy-1.21.6.zip
SHA256
8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c numpy-1.21.6-cp310-cp310-win32.whl
d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f numpy-1.21.6-cp310-cp310-win_amd64.whl
6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7 numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e numpy-1.21.6-cp37-cp37m-win32.whl
bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a numpy-1.21.6-cp37-cp37m-win_amd64.whl
82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552 numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3 numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4 numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470 numpy-1.21.6-cp38-cp38-win32.whl
bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf numpy-1.21.6-cp38-cp38-win_amd64.whl
4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786 numpy-1.21.6-cp39-cp39-win32.whl
e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3 numpy-1.21.6-cp39-cp39-win_amd64.whl
dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d4efc6491a1cdc00f9eca9bf2c1aa13671776f6941c7321ddf75b45c862f0c2c numpy-1.21.6.tar.gz
ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656 numpy-1.21.6.zip
Compare Source
NumPy 1.21.5 Release Notes
NumPy 1.21.5 is a maintenance release that fixes a few bugs discovered
after the 1.21.4 release and does some maintenance to extend the 1.21.x
lifetime. The Python versions supported in this release are 3.7-3.10. If
you want to compile your own version using gcc-11, you will need to use
gcc-11.2+ to avoid problems.
Contributors
A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Matti Picus
- Rohit Goswami
- Ross Barnowski
- Sayed Adel
- Sebastian Berg
Pull requests merged
A total of 11 pull requests were merged for this release.
- #20357: MAINT: Do not forward
__(deep)copy__
calls of _GenericAlias
...
- #20462: BUG: Fix float16 einsum fastpaths using wrong tempvar
- #20463: BUG, DIST: Print os error message when the executable not exist
- #20464: BLD: Verify the ability to compile C++ sources before initiating...
- #20465: BUG: Force
npymath
to respect npy_longdouble
- #20466: BUG: Fix failure to create aligned, empty structured dtype
- #20467: ENH: provide a convenience function to replace
npy_load_module
- #20495: MAINT: update wheel to version that supports python3.10
- #20497: BUG: Clear errors correctly in F2PY conversions
- #20613: DEV: add a warningfilter to fix pytest workflow.
- #20618: MAINT: Help boost::python libraries at least not crash
Checksums
MD5
e00a3c2e1461dd2920ab4af6b753d3da numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
50e0526fa29110fb6033fa8285fba4e1 numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
bdbb19e7656d66250aa67bd1c7924764 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
c5c982a07797c8963b8fec44aae6db09 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b27b622f58caeeb7f14472651d655e3 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e545f6f85f950f57606efcaeeac2e50a numpy-1.21.5-cp310-cp310-win_amd64.whl
5c36eefdcb039c0d4db8882fddbeb695 numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
b5d080e0fd8b658419b3636f1cf5dc3a numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
ec1a9a1333a2bf61897f105ecd9f212a numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d5ab050300748f20cdc9c6e17ba8ffd4 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b7498a1d0ea7273ef1af56d58e02a550 numpy-1.21.5-cp37-cp37m-win32.whl
f55c7ecfd35769fb3f6a408c0c123372 numpy-1.21.5-cp37-cp37m-win_amd64.whl
843e3431ba4b56d3fc36b7c4cb6fc10c numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
4721e71bdc5697d310cd3a6b6cd60741 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
2169fb8ed40046e1e33d187fc85b91bb numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
52de43977749109509ee708a142a7d97 numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
703c0f54c5ede8cc0c648ef66cafac47 numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
50432f9cf1d5b2278ceb7a96890353ed numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c4c5336136e045d02c60ba8115eb6a2 numpy-1.21.5-cp38-cp38-win32.whl
c2e0744164f8255be70725ef42bc3f5b numpy-1.21.5-cp38-cp38-win_amd64.whl
b16dd7103117d051cb6c3b6c4434f7d2 numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
220dd07273aeb0b2ca8f0e4f543e43c3 numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
1dd09ad75eff93b274f650871e0b9287 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
6801263f51d3b13420b59ff84c716869 numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
035bde3955ae2f62ada65084d71a7421 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
09f202576cbd0ed6121cff10cdea831a numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c6a44c90c2d5124fea6cedbbf575e252 numpy-1.21.5-cp39-cp39-win32.whl
bbc11e31406a9fc48c18a41259bc8866 numpy-1.21.5-cp39-cp39-win_amd64.whl
5be2b6f6cf6fb3a3d98231e891260624 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8bc9ff24bac9bf4268372cefea8f0b6b numpy-1.21.5.tar.gz
88b5438ded7992fa2e6a810d43cd32a1 numpy-1.21.5.zip
SHA256
301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166 numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954 numpy-1.21.5-cp310-cp310-win_amd64.whl
08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76 numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611 numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa numpy-1.21.5-cp37-cp37m-win32.whl
025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939 numpy-1.21.5-cp37-cp37m-win_amd64.whl
3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8 numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640 numpy-1.21