TLA - Twitter Linguistic Analysis

Related tags

Text Data & NLP TLA
Overview

TLA - Twitter Linguistic Analysis

Tool for linguistic analysis of communities

TLA is built using PyTorch, Transformers and several other State-of-the-Art machine learning techniques and it aims to expedite and structure the cumbersome process of collecting, labeling, and analyzing data from Twitter for a corpus of languages while providing detailed labeled datasets for all the languages. The analysis provided by TLA will also go a long way in understanding the sentiments of different linguistic communities and come up with new and innovative solutions for their problems based on the analysis. List of languages our library provides support for are listed as follows:

Language Code Language Code
English en Hindi hi
Swedish sv Thai th
Dutch nl Japanese ja
Turkish tr Urdu ur
Indonesian id Portuguese pt
French fr Chinese zn-ch
Spanish es Persian fa
Romainain ro Russian ru

Features

  • Provides 16 labeled Datasets for different languages for analysis.
  • Implements Bert based architecture to identify languages.
  • Provides Functionalities to Extract,process and label tweets from twitter.
  • Provides a Random Forest classifier to implement sentiment analysis on any string.

Installation :

pip install --upgrade https://github.com/tusharsarkar3/TLA.git

Overview

Extract data
from TLA.Data.get_data import store_data
store_data('en',False)

This will extract and store the unlabeled data in a new directory inside data named datasets.

Label data
from TLA.Datasets.get_lang_data import language_data
df = language_data('en')
print(df)

This will print the labeled data that we have already collected.

Classify languages
Training

Training can be done in the following way:

from TLA.Lang_Classify.train import train_lang
train_lang(path_to_dataset,epochs)
Prediction

Inference is done in the following way:

from TLA.Lang_Classify.predict import predict
model = get_model(path_to_weights)
preds = predict(dataframe_to_be_used,model)
Analyse
Training

Training can be done in the following way:

from TLA.Analyse.train_rf import train_rf
train_rf(path_to_dataset)

This will store all the vectorizers and models in a seperate directory named saved_rf and saved_vec and they are present inside Analysis directory. Further instructions for training multiple languages is given in the next section which shows how to run the commands using CLI

Final Analysis

Analysis is done in the following way:

from TLA.Analysis.analyse import analyse_data 
analyse_data(path_to_weights)

This will store the final analysis as .csv inside a new directory named analysis.

Overview with Git

Installation another method
git clone https://github.com/tusharsarkar3/TLA.git
Extract data Navigate to the required directory
cd Data

Run the following command:

python get_data.py --lang en --process True

Lang flag is used to input the language of the dataset that is required and process flag shows where pre-processing should be done before returning the data. Give the following codes in the lang flag wrt the required language:

Loading Dataset

To load a dataset run the following command in python.

df= pd.read_csv("TLA/TLA/Datasets/get_data_en.csv")
 

The command will return a dataframe consisting of the data for the specific language requested.

In the phrase get_data_en, en can be sunstituted by the desired language code to load the dataframe for the specific language.

Pre-Processing

To preprocess a given string run the following command.

In your terminal use code

cd Data

then run the command in python

from TLA.Data import Pre_Process_Tweets

df=Pre_Process_Tweets.pre_process_tweet(df)

Here the function pre_process_tweet takes an input as a dataframe of tweets and returns an output of a dataframe with the list of preprocessed words for a particular tweet next to the tweet in the dataframe.

Analysis Training To train a random forest classifier for the purpose of sentiment analysis run the following command in your terminal.
cd Analysis

then

python train.rf --path "path to your datafile" --train_all_datasets False

here the --path flag represents the path to the required dataset you want to train the Random Forest Classifier on the --train_all_datasets flag is a boolean which can be used to train the model on multiple datasets at once.

The output is a file with the a .pkl file extention saved in the folder at location "TLA\Analysis\saved_rf{}.pkl" The output for vectorization of is stored in a .pkl file in the directory "TLA\Analysis\saved_vec{}.pkl"

Get Sentiment

To get the sentiment of any string use the following code.

In your terminal type

cd Analysis

then in your terminal type

python get_sentiment.py --prediction "Your string for prediction to be made upon" --lang "en"

here the --prediction flag collects the string for which you want to get the sentiment for. the --lang represents the language code representing the language you typed your string in.

The output is a sentiment which is either positive or negative depending on your string.

Statistics

To get a comprehensive statistic on sentiment of datasets run the following command.

In your terminal type

cd Analysis

then

python analyse.py 

This will give you an output of a table1.csv file at the location 'TLA\Analysis\analysis\table1.csv' comprising of statistics relating to the percentage of positive or negative tweets for a given language dataset.

It will also give a table2.csv file at 'TLA\Analysis\analysis\table2.csv' comprising of statistics for all languages combined.

Language Classification Training To train a model for language classfication on a given dataset run the following commands.

In your terminal run

cd Lang_Classify

then run

python train.py --data "path for your dataset" --model "path to weights if pretrained" --epochs 4

The --data flag requires the path to your training dataset.

The --model flag requires the path to the model you want to implement

The --epoch flag represents the epochs you want to train your model for.

The output is a file with a .pt extention named saved_wieghts_full.pt where your trained wieghst are stored.

Prediction To make prediction on any given string Us ethe following code.

In your terminal type

cd Lang_Classify

then run the code

python predict.py --predict "Text/DataFrame for language to predicted" --weights " Path for the stored weights of your model " 

The --predict flag requires the string you want to get the language for.

The --wieghts flag is the path for the stored wieghts you want to run your model on to make predictions.

The outputs is the language your string was typed in.


Results:

img

Performance of TLA ( Loss vs epochs)

Language Total tweets Positive Tweets Percentage Negative Tweets Percentage
English 500 66.8 33.2
Spanish 500 61.4 38.6
Persian 50 52 48
French 500 53 47
Hindi 500 62 38
Indonesian 500 63.4 36.6
Japanese 500 85.6 14.4
Dutch 500 84.2 15.8
Portuguese 500 61.2 38.8
Romainain 457 85.55 14.44
Russian 213 62.91 37.08
Swedish 420 80.23 19.76
Thai 424 71.46 28.53
Turkish 500 67.8 32.2
Urdu 42 69.04 30.95
Chinese 500 80.6 19.4

Reference:

@misc{sarkar2021tla,
     title={TLA: Twitter Linguistic Analysis}, 
     author={Tushar Sarkar and Nishant Rajadhyaksha},
     year={2021},
     eprint={2107.09710},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}
@misc{640cba8b-35cb-475e-ab04-62d079b74d13,
 title = {TLA: Twitter Linguistic Analysis},
 author = {Tushar Sarkar and Nishant Rajadhyaksha},
  journal = {Software Impacts},
 doi = {10.24433/CO.6464530.v1}, 
 howpublished = {\url{https://www.codeocean.com/}},
 year = 2021,
 month = {6},
 version = {v1}
}

Features to be added :

  • Access to more language
  • Creating GUI based system for better accesibility
  • Improving performance of the baseline model

Developed by Tushar Sarkar and Nishant Rajadhyaksha

You might also like...
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.
This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Twitter COVID-19 Sentiment Analysis Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold Pro

An attempt to map the areas with active conflict in Ukraine using open source twitter data.
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Owner
Tushar Sarkar
I love solving problems with data
Tushar Sarkar
Twitter-NLP-Analysis - Twitter Natural Language Processing Analysis

Twitter-NLP-Analysis Business Problem I got last @turk_politika 3000 tweets with

Çağrı Karadeniz 7 Mar 12, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources (NAACL-2021).

Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources Description This is the repository for the paper Unifying Cross-

Sapienza NLP group 16 Sep 9, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 5, 2021
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 8, 2022
Twitter Sentiment Analysis using #tag, words and username

Twitter Sentment Analysis Web App using #tag, words and username to fetch data finds Insides of data and Tells Sentiment of the perticular #tag, words or username.

Kumar Saksham 26 Dec 25, 2022
C.J. Hutto 3.8k Dec 30, 2022
C.J. Hutto 2.8k Feb 18, 2021
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022