ForecastingNonverbalSignals
This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks.
Dependencies
- python 3.6
- tensorFlow 1.15
- numpy
- pickle5
- sklearn
- pandas
- h5py
Usage
- Install virtual environment named SocialActionGAN with dependencies:
conda create -n SocialActionGAN python=3.6 tensorflow=1.15 pickle5 scikit-learn pandas h5py
- Download UDIVA_2d.pickle, and put it in the folder dataset. Training model with the default parameters:
(SocialActionGAN): python train.py
- Alternatively, download the pre-trained model and put it in the folder model. Forecast the motions, generate the ouput file based on the format of the challenge:
(SocialActionGAN): python generate.py --annotations_dir "/path_to/talk_annotations_test_masked/" --segments_path "/path_to/test_segments_topredict.csv"
Optional
- Extract the training data, package it as UDIVA_2d.pickle:
(SocialActionGAN): python preprocessing.py --annotations_dir "/path_to/talk_annotations_train"
License
Citation
If you use this repository for your research, please cite:
@misc{tuyen2021forecasting,
title={Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks},
author={Nguyen Tan Viet Tuyen and Oya Celiktutan},
year={2021},
eprint={2110.09378},
archivePrefix={arXiv},
primaryClass={cs.AI}
}