sne4onnx
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want. Simple Network Extraction for ONNX.
https://github.com/PINTO0309/simple-onnx-processing-tools
Key concept
- If INPUT OP name and OUTPUT OP name are specified, the onnx graph within the range of the specified OP name is extracted and .onnx is generated.
- Change backend to
onnx.utils.Extractor.extract_model
so that onnx.ModelProto can be specified as input.
1. Setup
1-1. HostPC
### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc
### run
$ pip install -U onnx \
&& pip install -U sne4onnx
1-2. Docker
### docker pull
$ docker pull pinto0309/sne4onnx:latest
### docker build
$ docker build -t pinto0309/sne4onnx:latest .
### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/sne4onnx:latest
$ cd /workdir
2. CLI Usage
$ sne4onnx -h
usage:
sne4onnx [-h]
--input_onnx_file_path INPUT_ONNX_FILE_PATH
--input_op_names INPUT_OP_NAMES
--output_op_names OUTPUT_OP_NAMES
[--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
optional arguments:
-h, --help
show this help message and exit
--input_onnx_file_path INPUT_ONNX_FILE_PATH
Input onnx file path.
--input_op_names INPUT_OP_NAMES
List of OP names to specify for the input layer of the model.
Specify the name of the OP, separated by commas.
e.g. --input_op_names aaa,bbb,ccc
--output_op_names OUTPUT_OP_NAMES
List of OP names to specify for the output layer of the model.
Specify the name of the OP, separated by commas.
e.g. --output_op_names ddd,eee,fff
--output_onnx_file_path OUTPUT_ONNX_FILE_PATH
Output onnx file path. If not specified, extracted.onnx is output.
3. In-script Usage
$ python
>>> from sne4onnx import extraction
>>> help(extraction)
Help on function extraction in module sne4onnx.onnx_network_extraction:
extraction(
input_op_names: List[str],
output_op_names: List[str],
input_onnx_file_path: Union[str, NoneType] = '',
onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
output_onnx_file_path: Union[str, NoneType] = ''
) -> onnx.onnx_ml_pb2.ModelProto
Parameters
----------
input_op_names: List[str]
List of OP names to specify for the input layer of the model.
Specify the name of the OP, separated by commas.
e.g. ['aaa','bbb','ccc']
output_op_names: List[str]
List of OP names to specify for the output layer of the model.
Specify the name of the OP, separated by commas.
e.g. ['ddd','eee','fff']
input_onnx_file_path: Optional[str]
Input onnx file path.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
onnx_graph: Optional[onnx.ModelProto]
onnx.ModelProto.
Either input_onnx_file_path or onnx_graph must be specified.
onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.
output_onnx_file_path: Optional[str]
Output onnx file path.
If not specified, .onnx is not output.
Default: ''
Returns
-------
extracted_graph: onnx.ModelProto
Extracted onnx ModelProto
4. CLI Execution
$ sne4onnx \
--input_onnx_file_path input.onnx \
--input_op_names aaa,bbb,ccc \
--output_op_names ddd,eee,fff \
--output_onnx_file_path output.onnx
5. In-script Execution
5-1. Use ONNX files
from sne4onnx import extraction
extracted_graph = extraction(
input_op_names=['aaa', 'bbb', 'ccc'],
output_op_names=['ddd', 'eee', 'fff'],
input_onnx_file_path='input.onnx',
output_onnx_file_path='output.onnx',
)
5-2. Use onnx.ModelProto
from sne4onnx import extraction
extracted_graph = extraction(
input_op_names=['aaa', 'bbb', 'ccc'],
output_op_names=['ddd', 'eee', 'fff'],
onnx_graph=graph,
output_onnx_file_path='output.onnx',
)
6. Samples
6-1. Pre-extraction
6-2. Extraction
$ sne4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280.onnx \
--input_op_names 0,1 \
--output_op_names 497,785 \
--output_onnx_file_path hitnet_sf_finalpass_720x960_head.onnx
6-3. Extracted
7. Reference
- https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
- https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
- https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
- https://github.com/PINTO0309/snd4onnx
- https://github.com/PINTO0309/scs4onnx
- https://github.com/PINTO0309/snc4onnx
- https://github.com/PINTO0309/sog4onnx
- https://github.com/PINTO0309/PINTO_model_zoo
8. Issues
https://github.com/PINTO0309/simple-onnx-processing-tools/issues