How to use TensorLayer

Overview

How to use TensorLayer

While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day.

Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Installation

  • To keep your TL version and edit the source code easily, you can download the whole repository by excuting git clone https://github.com/zsdonghao/tensorlayer.git in your terminal, then copy the tensorlayer folder into your project
  • As TL is growing very fast, if you want to use pip install, we suggest you to install the master version
  • For NLP application, you will need to install NLTK and NLTK data

2. Interaction between TF and TL

3. Training/Testing switching

def mlp(x, is_train=True, reuse=False):
    with tf.variable_scope("MLP", reuse=reuse):
      net = InputLayer(x, name='in')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop1')
      net = DenseLayer(net, n_units=800, act=tf.nn.relu, name='dense1')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop2')
      net = DenseLayer(net, n_units=800, act=tf.nn.relu, name='dense2')
      net = DropoutLayer(net, 0.8, True, is_train, name='drop3')
      net = DenseLayer(net, n_units=10, act=tf.identity, name='out')
      logits = net.outputs
      net.outputs = tf.nn.sigmoid(net.outputs)
      return net, logits
x = tf.placeholder(tf.float32, shape=[None, 784], name='x')
y_ = tf.placeholder(tf.int64, shape=[None, ], name='y_')
net_train, logits = mlp(x, is_train=True, reuse=False)
net_test, _ = mlp(x, is_train=False, reuse=True)
cost = tl.cost.cross_entropy(logits, y_, name='cost')

More in here.

4. Get variables and outputs

train_vars = tl.layers.get_variables_with_name('MLP', True, True)
train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost, var_list=train_vars)
layers = tl.layers.get_layers_with_name(network, "MLP", True)
  • This method usually be used for activation regularization.

5. Data augmentation for large dataset

If your dataset is large, data loading and data augmentation will become the bottomneck and slow down the training. To speed up the data processing you can:

6. Data augmentation for small dataset

If your data size is small enough to feed into the memory of your machine, and data augmentation is simple. To debug easily, you can:

7. Pre-trained CNN and Resnet

8. Using tl.models

  • Use pretrained VGG16 for ImageNet classification
x = tf.placeholder(tf.float32, [None, 224, 224, 3])
# get the whole model
vgg = tl.models.VGG16(x)
# restore pre-trained VGG parameters
sess = tf.InteractiveSession()
vgg.restore_params(sess)
# use for inferencing
probs = tf.nn.softmax(vgg.outputs)
  • Extract features with VGG16 and retrain a classifier with 100 classes
x = tf.placeholder(tf.float32, [None, 224, 224, 3])
# get VGG without the last layer
vgg = tl.models.VGG16(x, end_with='fc2_relu')
# add one more layer
net = tl.layers.DenseLayer(vgg, 100, name='out')
# initialize all parameters
sess = tf.InteractiveSession()
tl.layers.initialize_global_variables(sess)
# restore pre-trained VGG parameters
vgg.restore_params(sess)
# train your own classifier (only update the last layer)
train_params = tl.layers.get_variables_with_name('out')
  • Reuse model
x1 = tf.placeholder(tf.float32, [None, 224, 224, 3])
x2 = tf.placeholder(tf.float32, [None, 224, 224, 3])
# get VGG without the last layer
vgg1 = tl.models.VGG16(x1, end_with='fc2_relu')
# reuse the parameters of vgg1 with different input
vgg2 = tl.models.VGG16(x2, end_with='fc2_relu', reuse=True)
# restore pre-trained VGG parameters (as they share parameters, we don’t need to restore vgg2)
sess = tf.InteractiveSession()
vgg1.restore_params(sess)

9. Customized layer

    1. Write a TL layer directly
    1. Use LambdaLayer, it can also accept functions with new variables. With this layer you can connect all third party TF libraries and your customized function to TL. Here is an example of using Keras and TL together.
import tensorflow as tf
import tensorlayer as tl
from keras.layers import *
from tensorlayer.layers import *
def my_fn(x):
    x = Dropout(0.8)(x)
    x = Dense(800, activation='relu')(x)
    x = Dropout(0.5)(x)
    x = Dense(800, activation='relu')(x)
    x = Dropout(0.5)(x)
    logits = Dense(10, activation='linear')(x)
    return logits

network = InputLayer(x, name='input')
network = LambdaLayer(network, my_fn, name='keras')
...

10. Sentences tokenization

>>> captions = ["one two , three", "four five five"] # 2个 句 子 
>>> processed_capts = []
>>> for c in captions:
>>>    c = tl.nlp.process_sentence(c, start_word="<S>", end_word="</S>")
>>>    processed_capts.append(c)
>>> print(processed_capts)
... [['<S>', 'one', 'two', ',', 'three', '</S>'],
... ['<S>', 'four', 'five', 'five', '</S>']]
>>> tl.nlp.create_vocab(processed_capts, word_counts_output_file='vocab.txt', min_word_count=1)
... [TL] Creating vocabulary.
... Total words: 8
... Words in vocabulary: 8
... Wrote vocabulary file: vocab.txt
  • Finally use tl.nlp.Vocabulary to create a vocabulary object from the txt vocabulary file created by tl.nlp.create_vocab
>>> vocab = tl.nlp.Vocabulary('vocab.txt', start_word="<S>", end_word="</S>", unk_word="<UNK>")
... INFO:tensorflow:Initializing vocabulary from file: vocab.txt
... [TL] Vocabulary from vocab.txt : <S> </S> <UNK>
... vocabulary with 10 words (includes start_word, end_word, unk_word)
...   start_id: 2
...   end_id: 3
...   unk_id: 9
...   pad_id: 0

Then you can map word to ID or vice verse as follow:

>>> vocab.id_to_word(2)
... 'one'
>>> vocab.word_to_id('one')
... 2
>>> vocab.id_to_word(100)
... '<UNK>'
>>> vocab.word_to_id('hahahaha')
... 9

11. Dynamic RNN and sequence length

  • Apply zero padding on a batch of tokenized sentences as follow:
>>> sequences = [[1,1,1,1,1],[2,2,2],[3,3]]
>>> sequences = tl.prepro.pad_sequences(sequences, maxlen=None, 
...         dtype='int32', padding='post', truncating='pre', value=0.)
... [[1 1 1 1 1]
...  [2 2 2 0 0]
...  [3 3 0 0 0]]
>>> data = [[1,2,0,0,0], [1,2,3,0,0], [1,2,6,1,0]]
>>> o = tl.layers.retrieve_seq_length_op2(data)
>>> sess = tf.InteractiveSession()
>>> tl.layers.initialize_global_variables(sess)
>>> print(o.eval())
... [2 3 4]

12. Save models

    1. tl.files.save_npz save all model parameters (weights) into a a list of array, restore using tl.files.load_and_assign_npz
    1. tl.files.save_npz_dict save all model parameters (weights) into a dictionary of array, key is the parameter name, restore using tl.files.load_and_assign_npz_dict
    1. tl.files.save_ckpt save all model parameters (weights) into TensorFlow ckpt file, restore using tl.files.load_ckpt.

13. Compatibility with other TF wrappers

TL can interact with other TF wrappers, which means if you find some codes or models implemented by other wrappers, you can just use it !

  • Other TensorFlow layer implementations can be connected into TensorLayer via LambdaLayer, see example here)
  • TF-Slim to TL: SlimNetsLayer (you can use all Google's pre-trained convolutional models with this layer !!!)

14. Others

  • BatchNormLayer's decay default is 0.9, set to 0.999 for large dataset.
  • Matplotlib issue arise when importing TensorLayer issues, see FQA

Useful links

Author

  • Zhang Rui
  • Hao Dong
You might also like...
A fast and easy to use, moddable, Python based Minecraft server!
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

Implements Gradient Centralization and allows it to use as a Python package in TensorFlow
Implements Gradient Centralization and allows it to use as a Python package in TensorFlow

Gradient Centralization TensorFlow This Python package implements Gradient Centralization in TensorFlow, a simple and effective optimization technique

THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

TorchMetrics is a collection of 25+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Comments
Owner
zhangrui
AI@CMU, UCLA
zhangrui
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

null 10 Dec 14, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.6k Dec 31, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

null 11.4k Jan 9, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 5, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.6k Jan 6, 2023
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 3, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano <https:

null 9.3k Feb 12, 2021
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 2.8k Feb 12, 2021