15 Repositories
Python tensorboard Libraries
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱
Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡
Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re
A visualization tool to show a TensorFlow's graph like TensorBoard
tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"
DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv
CNN visualization tool in TensorFlow
tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.
Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are
YOLOv4-v3 Training Automation API for Linux
This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. NoCode training with YOLOv4 and YOLOV3 has never been so easy.
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)
tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0
How to use TensorLayer
How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.
HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex
Visualize the training curve from the *.csv file (tensorboard format).
Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c
Tensorboard plugin 3d with python
tensorboard-plugin-3d Overview In this example, we render a run selector dropdown component. When the user selects a run, it shows a preview of all sc
Streamlit component for TensorBoard, TensorFlow's visualization toolkit
streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In
Logging MXNet data for visualization in TensorBoard.
Logging MXNet Data for Visualization in TensorBoard Overview MXBoard provides a set of APIs for logging MXNet data for visualization in TensorBoard. T
tensorboard for pytorch (and chainer, mxnet, numpy, ...)
tensorboardX Write TensorBoard events with simple function call. The current release (v2.1) is tested on anaconda3, with PyTorch 1.5.1 / torchvision 0