Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

Overview

DeepMTA_PyTorch

Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Chen, Jin Tang, Bin Luo, Yaowei Wang, Yonghong Tian, Feng Wu, IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT 2021) [Paper] [Project]

Abstract:

Most of the existing single object trackers track the target in a unitary local search window, making them particularly vulnerable to challenging factors such as heavy occlusions and out-of-view movements. Despite the attempts to further incorporate global search, prevailing mechanisms that cooperate local and global search are relatively static, thus are still sub-optimal for improving tracking performance. By further studying the local and global search results, we raise a question: can we allow more dynamics for cooperating both results? In this paper, we propose to introduce more dynamics by devising a dynamic attention-guided multi-trajectory tracking strategy. In particular, we construct dynamic appearance model that contains multiple target templates, each of which provides its own attention for locating the target in the new frame. Guided by different attention, we maintain diversified tracking results for the target to build multi-trajectory tracking history, allowing more candidates to represent the true target trajectory. After spanning the whole sequence, we introduce a multi-trajectory selection network to find the best trajectory that deliver improved tracking performance. Extensive experimental results show that our proposed tracking strategy achieves compelling performance on various large-scale tracking benchmarks.

Our Proposed Approach:

fig-1

Install:

git clone https://github.com/wangxiao5791509/DeepMTA_PyTorch
cd DeepMTA_TCSVT_project

# create the conda environment
conda env create -f environment.yml
conda activate deepmta

# build the vot toolkits
bash benchmark/make_toolkits.sh

Download Dataset and Model:

download pre-trained Traj-Evaluation-Network [Onedrive] and Dynamic-TANet-Model [Onedrive]

get the dataset OTB2015, GOT-10k, LaSOT, UAV123, UAV20L, OxUvA from [List].

Download TNL2K dataset (published on CVPR 2021, 1300/700 for train and test subset) from: https://sites.google.com/view/langtrackbenchmark/

Train:

  1. you can directly use the pre-trained tracking model of THOR [github];

  2. train Dynamic Target-aware Attention:

cd ~/DeepMTA_TCSVT_project/trackers/dcynet_modules_adaptis/ 
python train.py
  1. train Trajectory Evaluation Network:
python train_traj_measure_net.py

Tracking:

take got-10k and LaSOT dataset as the examples:

python testing.py -d GOT10k -t SiamRPN --lb_type ensemble

python testing.py -d LaSOT -t SiamRPN --lb_type ensemble

Benchmark Results:

Experimental results on the compared tracking benchmarks

[OTB2015] [LaSOT] [OxUvA] [GOT-10k] [UAV123] [TNL2K]

Tracking Results:

Tracking results on LaSOT dataset.

fig-1

Tracking results on TNL2K dataset.

fig-1

Attention prediciton and Tracking Results.

fig-1 fig-1

Acknowledgement:

Our tracker is developed based on THOR which is published on BMVC-2019 [Paper] [Code]

Other related works:

  • MTP: Multi-hypothesis Tracking and Prediction for Reduced Error Propagation, Xinshuo Weng, Boris Ivanovic, and Marco Pavone [Paper] [Code]
  • D.-Y. Lee, J.-Y. Sim, and C.-S. Kim, “Multihypothesis trajectory analysis for robust visual tracking,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5088–5096. [Paper]
  • C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking revisited,” in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4696–4704. [Paper]

Citation:

If you find this paper useful for your research, please consider to cite our paper:

@inproceedings{wang2021deepmta,
 title={Dynamic Attention guided Multi-Trajectory Analysis for Single Object Tracking},
 author={Xiao, Wang and Zhe, Chen and Jin, Tang and Bin, Luo and Yaowei, Wang and Yonghong, Tian and Feng, Wu},
 booktitle={IEEE Transactions on Circuits and Systems for Video Technology},
 doi={10.1109/TCSVT.2021.3056684}, 
 year={2021}
}

If you have any questions about this work, please contact with me via: [email protected] or [email protected]

You might also like...
Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

A simple implementation of Kalman filter in single object tracking
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Python package for multiple object tracking research with focus on laboratory animals tracking.
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Owner
Xiao Wang(王逍)
Postdoc researcher at Peng Cheng Laboratory. My wechat: wangxiao5791509
Xiao Wang(王逍)
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion Read our ICRA 2021 paper here. Check out the 3 minute video for the quick intro or the full prese

Aleksandr Kim 276 Dec 30, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

null 49 Dec 19, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022