WhiteBox Utilities Toolkit: Tools to make your life easier
Fancy data functions that will make your life as a data scientist easier.
Installing
To install this library in your Python environment:
pip install whiteboxml
Documentation
Metrics
Classification
- ROC curve / AUC:
import numpy as np
from whiteboxml.modeling.metrics import plot_roc_auc_binary
y_pred = np.random.normal(0, 1, 1000)
y_true = np.random.choice([0, 1], 1000)
ax, fpr, tpr, thr, auc_score = plot_roc_auc_binary(y_pred=y_pred, y_true=y_true, figsize=(8, 8))
ax.get_figure().savefig('roc_curve.png')
- Confusion Matrix:
import numpy as np
from whiteboxml.modeling.metrics import plot_confusion_matrix
y_true = np.random.choice([0, 1, 2, 3], 10000)
y_pred = np.random.choice([0, 1, 2, 3], 10000)
ax, matrix = plot_confusion_matrix(y_pred=y_pred, y_true=y_true,
class_labels=['a', 'b', 'c', 'd'])
ax.get_figure().savefig('confusion_matrix.png')
- Optimal Threshold:
import numpy as np
from whiteboxml.modeling.metrics import get_optimal_thr
y_pred_proba = np.random.normal(0, 1, (100, 1))
y_true = np.random.choice([0, 1], (100, 1))
thr = get_optimal_thr(y_pred=y_pred_proba, y_true=y_true)