*ObjDetApp* deploys a pytorch model for object detection

Overview
*ObjDetApp* deploys a pytorch model for object detection

   ____  _     _ _____       _
  / __ \| |   (_)  __ \     | |     /\
 | |  | | |__  _| |  | | ___| |_   /  \   _ __  _ __
 | |  | | '_ \| | |  | |/ _ \ __| / /\ \ | '_ \| '_ \
 | |__| | |_) | | |__| |  __/ |_ / ____ \| |_) | |_) |
  \____/|_.__/| |_____/ \___|\__/_/    \_\ .__/| .__/
             _/ |                        | |   | |
            |__/                         |_|   |_|

====================================================================
CONTENTS                                                  *Contents*

    1. Introduction .................... |Introduction|
    2. Prerequisites ................... |Prerequisites|
    3. Usage ........................... |Usage|
        3.1 WebApp ..................... |WebAppUsage|
        3.2 GUIApp ..................... |GUIAppUsage|
    4. Credits ......................... |Credits|
    5. License ......................... |License|

====================================================================
Section 1: Introduction                               *Introduction*

This is a side project (or not qualified as a project) derived from a school
assignment, which focuses on the deployment of a pytorch model for object
detection, hence the name.

The model's performance is really bad but this app doesn't focus on that anyway.
You can help me perfect and package it by forking.

App tested on Linux.

====================================================================
Section 2: Prerequisites                             *Prerequisites*

Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder.

>
    sudo apt install default-libmysqlclient-dev
    pip install -r requirements.txt
    npm install
<

====================================================================
Section 3: Usage                                             *Usage*

WebApp:~

                                                       *WebAppUsage*

Start backend server (Default port: 5000)

>
    FLASK_ENV=development FLASK_APP=server.py flask run
<

Build (Default into build/)

>
    npm run build
<

Serve the webpage (Default port: 5512)

>
    npm run dev
<

GUIApp:~

                                                       *GUIAppUsage*

>
    python gui.py
<

====================================================================
Section 4: Credits                                         *Credits*

ObjDetApp wouldn't be possible without these wonderful projects.

https://github.com/pallets/flask
https://github.com/pytorch/pytorch

Shout out to @sgrvinod for his great tutorial.

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/

====================================================================
Section 5: License                                         *License*

Copyright © 2021 Will Chao. Distributed under the MIT license.

====================================================================
vim:tw=78:ts=8:ft=help:noet:nospell
You might also like...
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Repository to run object detection on a model trained on an autonomous driving dataset.
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Tensorflow 2 Object Detection API  kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Owner
Will Chao
SWE in China, Front-end developer, Vim enthusiast
Will Chao
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

null 5 Dec 10, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

null 3 Jan 26, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 6, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 1, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.

Su Pang 254 Dec 16, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 4, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

null 44 Dec 9, 2022