*ObjDetApp* deploys a pytorch model for object detection ____ _ _ _____ _ / __ \| | (_) __ \ | | /\ | | | | |__ _| | | | ___| |_ / \ _ __ _ __ | | | | '_ \| | | | |/ _ \ __| / /\ \ | '_ \| '_ \ | |__| | |_) | | |__| | __/ |_ / ____ \| |_) | |_) | \____/|_.__/| |_____/ \___|\__/_/ \_\ .__/| .__/ _/ | | | | | |__/ |_| |_| ==================================================================== CONTENTS *Contents* 1. Introduction .................... |Introduction| 2. Prerequisites ................... |Prerequisites| 3. Usage ........................... |Usage| 3.1 WebApp ..................... |WebAppUsage| 3.2 GUIApp ..................... |GUIAppUsage| 4. Credits ......................... |Credits| 5. License ......................... |License| ==================================================================== Section 1: Introduction *Introduction* This is a side project (or not qualified as a project) derived from a school assignment, which focuses on the deployment of a pytorch model for object detection, hence the name. The model's performance is really bad but this app doesn't focus on that anyway. You can help me perfect and package it by forking. App tested on Linux. ==================================================================== Section 2: Prerequisites *Prerequisites* Get trained *model_state_dict.pth* from https://drive.google.com/file/d/1oi8iIQGn0OFSRf44hWLI8kCbj5OrlkCy/view?usp=sharing and put it under this folder. > sudo apt install default-libmysqlclient-dev pip install -r requirements.txt npm install < ==================================================================== Section 3: Usage *Usage* WebApp:~ *WebAppUsage* Start backend server (Default port: 5000) > FLASK_ENV=development FLASK_APP=server.py flask run < Build (Default into build/) > npm run build < Serve the webpage (Default port: 5512) > npm run dev < GUIApp:~ *GUIAppUsage* > python gui.py < ==================================================================== Section 4: Credits *Credits* ObjDetApp wouldn't be possible without these wonderful projects. https://github.com/pallets/flask https://github.com/pytorch/pytorch Shout out to @sgrvinod for his great tutorial. https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection/ ==================================================================== Section 5: License *License* Copyright © 2021 Will Chao. Distributed under the MIT license. ==================================================================== vim:tw=78:ts=8:ft=help:noet:nospell
*ObjDetApp* deploys a pytorch model for object detection
Overview
You might also like...
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.
ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.
Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)
Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII
赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal
Repository to run object detection on a model trained on an autonomous driving dataset.
Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama
Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a
Run object detection model on the Raspberry Pi
Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection
Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is
Yolo object detection - Yolo object detection with python
How to run download required files make build_image make download Docker versio
MOT-Tracking-by-Detection-Pipeline - For Tracking-by-Detection format MOT (Multi Object Tracking), is it a framework that separates Detection and Tracking processes?
MOT-Tracking-by-Detection-Pipeline Tracking-by-Detection形式のMOT(Multi Object Trac
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection
CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on the combined output candidates of any 3D and any 2D detector, and is trained to produce more accurate 3D and 2D detection results.
Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking
Object tracking and object detection is applied to track golf puts in real time and display stats/games.
Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac
Auto-Lama combines object detection and image inpainting to automate object removals
Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and