I managed to run your code and start the training on the pre-trained model however, I am getting the same results (about 50% accuracy) as shown in the jupyter notebook
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 1 - loss : 0.6947 - acc: 0.4957 - val_loss : 0.6930 - val_acc: 0.5084
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 2 - loss : 0.6947 - acc: 0.4881 - val_loss : 0.6930 - val_acc: 0.5084
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 3 - loss : 0.6948 - acc: 0.5003 - val_loss : 0.6942 - val_acc: 0.5088
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 4 - loss : 0.6941 - acc: 0.5060 - val_loss : 0.6931 - val_acc: 0.5088
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 5 - loss : 0.6951 - acc: 0.4868 - val_loss : 0.6934 - val_acc: 0.5093
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 6 - loss : 0.6944 - acc: 0.5146 - val_loss : 0.6936 - val_acc: 0.4912
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 7 - loss : 0.6947 - acc: 0.4924 - val_loss : 0.6935 - val_acc: 0.4907
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 8 - loss : 0.6949 - acc: 0.4954 - val_loss : 0.6930 - val_acc: 0.5093
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 9 - loss : 0.6945 - acc: 0.5010 - val_loss : 0.6966 - val_acc: 0.4921
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 10 - loss : 0.6949 - acc: 0.4874 - val_loss : 0.6934 - val_acc: 0.5093
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 11 - loss : 0.6941 - acc: 0.5056 - val_loss : 0.6971 - val_acc: 0.5084
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 12 - loss : 0.6946 - acc: 0.5023 - val_loss : 0.6949 - val_acc: 0.4907
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 13 - loss : 0.6945 - acc: 0.4954 - val_loss : 0.6933 - val_acc: 0.4916
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 14 - loss : 0.6942 - acc: 0.5030 - val_loss : 0.6958 - val_acc: 0.4907
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 15 - loss : 0.6935 - acc: 0.5126 - val_loss : 0.6965 - val_acc: 0.5079
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 16 - loss : 0.6957 - acc: 0.4967 - val_loss : 0.6935 - val_acc: 0.4907
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 17 - loss : 0.6941 - acc: 0.5023 - val_loss : 0.6932 - val_acc: 0.5088
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 18 - loss : 0.6948 - acc: 0.4973 - val_loss : 0.6930 - val_acc: 0.5084
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 19 - loss : 0.6936 - acc: 0.5053 - val_loss : 0.6957 - val_acc: 0.4912
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 20 - loss : 0.6945 - acc: 0.4904 - val_loss : 0.6934 - val_acc: 0.5079
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 21 - loss : 0.6943 - acc: 0.4940 - val_loss : 0.6931 - val_acc: 0.5088
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 22 - loss : 0.6950 - acc: 0.4957 - val_loss : 0.6941 - val_acc: 0.5093
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 23 - loss : 0.6942 - acc: 0.4930 - val_loss : 0.6937 - val_acc: 0.4912
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 24 - loss : 0.6942 - acc: 0.4950 - val_loss : 0.6930 - val_acc: 0.5079
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 25 - loss : 0.6947 - acc: 0.4957 - val_loss : 0.6930 - val_acc: 0.5079
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 26 - loss : 0.6939 - acc: 0.4904 - val_loss : 0.6972 - val_acc: 0.5084
0%| | 0/755 [00:00<?, ?it/s]
Epoch : 27 - loss : 0.6941 - acc: 0.5070 - val_loss : 0.6930 - val_acc: 0.5088
0%| | 0/755 [00:00<?, ?it/s]
Can you let me know what changes are required to be done to achieve 76.6% accuracy as mentioned in the paper?