vit for few-shot classification

Overview

Few-Shot ViT

Requirements

  • PyTorch (>= 1.9)
  • TorchVision
  • timm (latest)
  • einops
  • tqdm
  • numpy
  • scikit-learn
  • scipy
  • argparse
  • tensorboardx

Pretrained Checkpoints

Currently we provide SUN-M (Visformer) trained on miniImageNet (5-way 1-shot and 5-way 5-shot), see Google Drive for details.

More pretrained checkpoints coming soon.

Evaluate the Pretrained Checkpoints

Prepare data

For example, miniImageNet:

cd test_phase

Download miniImageNet dataset from miniImageNet (courtesy of Spyros Gidaris)

unzip the package to materials/mini-imagenet, then obtain materials/mini-imagenet with pickle files.

Prapare pretrained checkpoints

Download corresponding checkpoints from Google Drive and store the checkpoints in test_phase/ directory.

Evaluation

cd test_phase
python test_few_shot.py --config configs/test_1_shot.yaml --shot 1 --gpu 1 # for 1-shot
python test_few_shot.py --config configs/test_5_shot.yaml --shot 5 --gpu 1 # for 5-shot

For 1-shot, you can obtain: test epoch 1: acc=67.80 +- 0.45 (%)

For 5-shot, you can obtain: test epoch 1: acc=83.25 +- 0.28 (%)

Test accuracy may slightly vary with different pytorch/cuda versions or different hardwares

TODO

  • more checkpoints
  • training code
You might also like...
So-ViT: Mind Visual Tokens for Vision Transformer
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

A PyTorch Implementation of ViT (Vision Transformer)
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

A simple approach to emable dense segmentation with ViT.
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

Implementing Vision Transformer (ViT) in PyTorch
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Comments
  • timm version

    timm version

    hello, I met a question when run your code as follow? Traceback (most recent call last): File "train_classifier.py", line 296, in <module> main(config) File "train_classifier.py", line 133, in main lr_scheduler = CosineLRScheduler(optimizer, warmup_lr_init=float(config['optimizer_args']['warmup_lr']), t_initial=config['max_epoch'], cycle_decay=0.1, warmup_t=int(config['optimizer_args']['warmup'])) TypeError: __init__() got an unexpected keyword argument 'cycle_decay' I think it's the version of timm package is not right, and the requirement in your code just say that is the latest version. can your provide the version of timm package??

    opened by JIAOJIAYUASD 2
  • The variant of visformer

    The variant of visformer

    Hi Bowen

    Thanks for opensource the inference code. I am just curious which variant of the visformer achieves the best results in Table 5 on mini-ImageNet? Is it visformer_80_small?

    opened by RongKaiWeskerMA 1
Releases(SUN)
Owner
Martin Dong
HIT student, major in Computer Science and Technology. CS.CV, object detection, segmentation, generation.
Martin Dong
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

null 220 Dec 31, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 3, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 8, 2023
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 3, 2023
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image classification in order to learn more general purpose embeddings, and facilitate the test-time adaptation to novel visual categories.

Yassine 34 Dec 25, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 7, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022