(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Overview

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation)

Filtering by Cluster Consistency (FCC) is a very useful algorithm for filtering out wrong keypoint matches using cycle-consistency constraints. It is fast, accurate and memory efficient. It is purely based on sparse matrix operations and is completely decentralized. As a result, it is scalable to large matching matrix (millions by millions, as those in large scale SfM datasets e.g. Photo Tourism). It uses a special reweighting scheme, which can be viewed as a message passing procedure, to refine the classification of good/bad keypoint matches. The filtering result is often better than Spectral and SDP based methods and can be several order of magnitude faster.

To use our code, please cite the following paper: Yunpeng Shi, Shaohan Li, Tyler Maunu, Gilad Lerman. Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching, International Conference on 3D Vision (3DV), 2021

Usage

Checkout the demo code Demo_FCC.m. A sample output is as follows:

>> Demo_FCC
generate initial camera adjacency matrix
create camera intrinsic matrices. f (focal length) is set to 5000 pixel sizes
generate 3d point cloud (a sphere)
generate camera locations from 3d gaussian dist with radius constraints
generating 2d keypoints from camera projection matrices
generating and corrupting keypoint matches
start running FCC
iteration 1 Completed!
iteration 2 Completed!
iteration 3 Completed!
iteration 4 Completed!
iteration 5 Completed!
iteration 6 Completed!
iteration 7 Completed!
iteration 8 Completed!
iteration 9 Completed!
iteration 10 Completed!
Elapsed time is 0.782890 seconds.
classification error (Jaccard distance) = 0.031733
precision rate = 0.973654
recall rate = 0.994319

It often gives almost perfect separation between good and bad matches even when a large fraction of clean keypoint matches are removed or corrupted. The classification result is often better (and much faster) than spectral-based methods. The following is an example of histograms of our FCC statistics for clean and wrong keypoint matches. Our statistic measures the confidence that a match is clean (good).

Flexible Input and Informative Output

The function FCC.m takes matching matrix (Adjacency matrix of the keypoint matching graph, where the indices of keypoints (nodes) are grouped by images) as input. In principle, the input can also be a SIFT feature (or other features) similarity matrix (so not necessarily binary). This function outputs the statistics matrix that tells you for each keypoint match its probability of being a good match. Thus, it contains the confidence information, not just classification results. One can set different threshold levels (tradeoff between precision and recall) for the statistics matrix to obtain the filtered matches, depending on the tasks.

A novel Synthetic Model

We provide a new synthetic model that realistically mirror the real scenario, and allows control of different parameters. Please check FCC_synthetic_data.m. It generates a set of synthetic cameras, images, 3d points and 2d keypoints. It allows user to control the sparsity in camera correspondences and keypoint matches, and the corruption level and corruption mode (elementwise or inlier-outlier model) for keypoint matches.

You might also like...
A PyTorch implementation of
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Official implementation of
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

This implements one of result networks from Large-scale evolution of image classifiers
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

Owner
Yunpeng Shi
Postdoctoral Research Associate at Princeton University
Yunpeng Shi
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

null 24 Jun 22, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 7, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

Phong Nguyen Ha 4 May 26, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 2, 2023