Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Overview

Fully Adversarial Mosaics (FAMOS)

Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization" available at http://arxiv.org/abs/1811.09236.

This code allows to generate image stylisation using an adversarial approach combining parametric and non-parametric elements. Tested to work on Ubuntu 16.04, Pytorch 0.4, Python 3.6. Nvidia GPU p100. It is recommended to have a GPU with 12, 16GB, or more of VRAM.

Parameters

Our method has many possible settings. You can specify them with command-line parameters. The options parser that defines these parameters is in the config.py file and the options are parsed there. You are free to explore them and discover the functionality of FAMOS, which can cover a very broad range of image stylization settings.

There are 5 groups of parameter types:

  • data path and loading parameters
  • neural network parameters
  • regularization and loss criteria weighting parameters
  • optimization parameters
  • parameters of the stochastic noise -- see PSGAN

Update Febr. 2019: video frame-by-frame rendering supported

mosaicGAN.py can now render a whole folder of test images with the trained model. Example videos: lion video with Münich and Berlin

Just specify

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=myFolder/ --testImage=myFolder/ 

with your myFolder and all images from that folder will be rendered by the generator of the GAN. Best to use the same test folder as content folder for training. To use in a video editing pipeline, save all video frames as images with a tool like AVIDEMUX, train FAMOS and save rendered frames, assemble again as video. Note: this my take some time to render thousands of images, you can edit in the code VIDEO_SAVE_FREQ to render the test image folder less frequently.

Update Jan. 2019: new functionality for texture synthesis

Due to interest in a new Pytorch implementation of our last paper "Texture Synthesis with Spatial Generative Adversarial Networks" (PSGAN) we added a script reimplementing it in the current repository. It shares many components with the texture mosaic stylization approach. A difference: PSGAN has no content image and loss, the generator is conditioned only on noise. Example call for texture synthesis:

python PSGAN.py --texturePath=samples/milano/ --ngf=120 --zLoc=50 --ndf=120 --nDep=5 --nDepD=5 --batchSize=16

In general, texture synthesis is much faster than the other methods in this repository, so feel free to add more channels and increase th batchsize. For more details and inspiration how to play with texture synthesis see our old repository with Lasagne code for PSGAN.

Usage: parametric convolutional adversarial mosaic

We provide scripts that have a main loop in which we (i) train an adversarial stylization model and (ii) save images (inference mode). If you need it, you can easily modify the code to save a trained model and load it later to do inference on many other images, see comments at the end of mosaicGAN.py.

In the simplest case, let us start an adversarial mosaic using convolutional networks. All you need is to specify the texture and content folders:

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/

This repository includes sample style files (4 satellite views of Milano, from Google Maps) and a portrait of Archimboldo (from the Google Art Project). Our GAN method will start running and training, occasionally saving results in "results/milano/archimboldo/" and printing the loss values to the terminal. Note that we use the first image found in contentPath as the default full-size output image stylization from FAMOS. You can also specify another image file name testImage to do out-of-sample stylization (inference).

This version uses DCGAN by default, which works nicely for the convolutional GAN we have here. Add the parameter LS for a least squares loss, which also works nicely. Interestingly, WGAN-GP is poorer for our model, which we did not investigate in detail.

If you want to tune the optimisation and model, you can adjust the layers and channels of the Generator and Discriminator, and also choose imageSize and batchSize. All this will effect the speed and performance of the model. You can also tweak the correspondance map cLoss and the content loss weighting fContent

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --imageSize=192 --batchSize=8 --ngf=80 --ndf=80  --nDepD=5  --nDep=4 --cLoss=101 --fContent=.6

Other interesting options are skipConnections and Ubottleneck. By disabling the skip connections of the Unet and defining a smaller bottleneck we can reduce the effect of the content image and emphasize more the texture style of the output.

Usage: the full FAMOS approach with parametric and non-parametric aspects

Our method has the property of being able to copy pixels from template images together with the convolutional generation of the previous section.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --dIter=2 --WGAN=True

Here we specify N=80 memory templates to copy from. In addition, we use mirror augmentation to get nice kaleidoscope-like effects in the template (and texture distribution). We use the WGAN GAN criterium, which works better for the combined parametric/non-parametric case (experimenting with the usage of DCGAN and WGAN depending on the architecture is advised). We set to use dIter=2 D steps for each G step.

The code also supports a slightly more complicated implementation than the one described in the paper. By setting multiScale=True a mixed template of images I_M on multiple levels of the Unet is used. In addition, by setting nBlocks=2 we will add residual layers to the decoder of the Unet, for a model with even higher capacity. Finally, you can also set refine=True and add a second Unet to refine the results of the first one. Of course, all these additional layers come at a computational cost -- selecting the layer depth, channel width, and the use of all these additional modules is a matter of trade-off and experimenting.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --multiScale=True --nBlocks=1 --dIter=2 --WGAN=True

The method will save mosaics occasionally, and optionally you can specify a testImage (size smaller than the initial content image) to check out-of-sample performance. You can check the patches image saved regularly how the patch based training proceeds. The files has a column per batch-instance, and 6 rows showing the quantities from the paper:

  • I_C content patch
  • I_M mixed template patch on highest scale
  • I_G parametric generation component
  • I blended patch
  • \alpha blending mask
  • A mixing matrix

License

Please make sure to cite/acknowledge our paper, if you use any of the contained code in your own projects or publication.

The MIT License (MIT)

Copyright © 2018 Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You might also like...
A high performance and generic framework for distributed DNN training
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies. The framework automatically analyzes trading sessions, and the analysis may be used to train predictive models.

Python Research Framework
Python Research Framework

Python Research Framework

A Lucid Framework for Transparent and Interpretable Machine Learning Models.
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

Automated modeling and machine learning framework FEDOT
Automated modeling and machine learning framework FEDOT

This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML). It can build custom modeling pipelines for different real-world processes in an automated way using an evolutionary approach. FEDOT supports classification (binary and multiclass), regression, clustering, and time series prediction tasks.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made this project as a requirement for an internship at Indian Servers. We are now making it open to contribution.

Comments
  • To avoid up side down textures

    To avoid up side down textures

    Hi,

    I couldn't find a parameter for mosaicFAMOS.py which prevents using up side down textures. Is it possible to use only original side textures?

    Atte T.

    opened by attenka 2
  • Pytorch Error

    Pytorch Error

    When trying to reproduce the examples I recieve the following error when using the mirror flag:

    Output

    outputFolderolder results/milano/archimboldo/2020-03-14_12-29-31/
    Namespace(LS=False, N=80, Ubottleneck=-1, WGAN=True, batchSize=8, beta1=0.5, blendMode=0, cLoss=0, contentPath='samples/archimboldo/', contentScale=1.0, coordCopy=True, dIter=2, fAdvM=0.0, fAlpha=0.1, fContent=1.0, fContentM=1.0, fDiversity=1, fEntropy=0.5, fTV=0.1, firstNoise=False, imageSize=160, lr=0.0002, manualSeed=None, mirror=True, multiScale=False, nBlocks=0, nDep=4, nDepD=4, ndf=80, ngf=80, niter=100, outputFolder='results/milano/archimboldo/2020-03-14_12-29-31/', refine=False, skipConnections=True, testImage='None', texturePath='samples/milano/', textureScale=1.0, trainOverfit=False, workers=0, zGL=20, zLoc=10, zPeriodic=0)
    Random Seed:  2593
    m1.png img added (1702, 806) total length 1
    m2.png img added (1698, 804) total length 2
    m4.png img added (1777, 744) total length 3
    m3.png img added (1700, 818) total length 4
    1200px-Giuseppe_Arcimboldo_-_Self_Portrait_-_Google_Art_Project.jpg img added (1200, 1782) total length 1
    image input torch.Size([1, 3, 1760, 1184])
    /usr/local/lib/python3.6/site-packages/torch/nn/functional.py:2764: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details.
      warnings.warn("Default grid_sample and affine_grid behavior has changed "
    tcmalloc: large alloc 2000486400 bytes == 0x555ed222e000 @  0x7fb535602b6b 0x7fb535622379 0x7fb4db742b4a 0x7fb4db7445fa 0x7fb4dd86c78a 0x7fb4ddab530b 0x7fb4ddafcb37 0x7fb526983ad5 0x7fb52698417b 0x7fb526988160 0x7fb52696009b 0x555e58295965 0x555e58205d7b 0x555e582957ce 0x555e582b7cba 0x555e5828ea94 0x555e5828f941 0x555e58295755 0x555e582b8a7a 0x555e58290459 0x555e582911ec 0x555e5830b9a4 0x555e5830bda1 0x555e5830bfa4 0x555e5830fa9e 0x555e581d74be 0x7fb534ffeb97 0x555e582be773
    image input torch.Size([1, 3, 806, 1702])
    Traceback (most recent call last):
      File "mosaicFAMOS.py", line 69, in <module>
        targetMosaic,templates=getTemplates(opt,N,vis=True,path=opt.outputFolder+desc)
      File "/content/drive/My Drive/Colab Notebooks/SatelliteFAMOS/prepareTemplates.py", line 139, in getTemplates
        out[n:n+1] = randomTile(flow,z)
      File "/content/drive/My Drive/Colab Notebooks/SatelliteFAMOS/prepareTemplates.py", line 96, in randomTile
        f=reflect(f)
      File "/content/drive/My Drive/Colab Notebooks/SatelliteFAMOS/prepareTemplates.py", line 82, in reflect
        return reflect_mirror(x)
      File "/content/drive/My Drive/Colab Notebooks/SatelliteFAMOS/prepareTemplates.py", line 74, in reflect_mirror
        f=torch.where(torch.ByteTensor(f>1), 2-f, f) #so 1:3 maps to 1:-1 - -reflection
    TypeError: expected Byte (got Bool)```
    opened by MQSchleich 3
Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 3, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 3, 2023
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 7, 2023
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 6, 2023
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

null 23.3k Dec 31, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 7, 2023
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

null 4.1k Jan 9, 2023