7552 Repositories
Python Deep-Learning-Based-State-Estimation Libraries
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.
Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)
This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"
FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)
ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v
Transfer Learning for Pose Estimation of Illustrated Characters
bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po
Meta Learning Backpropagation And Improving It (VSML)
Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts
This is a key logger based in python which when executed records all the keystrokes of the system it has been executed on .
This is a key logger based in python which when executed records all the keystrokes of the system it has been executed on
Image based Human Fall Detection
Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements
To attract customers, the hotel chain has added to its website the ability to book a room without prepayment
To attract customers, the hotel chain has added to its website the ability to book a room without prepayment. We need to predict whether the customer is going to reject the booking or not. Since in case of refusal, the hotel incurs losses.
🔤 Measure edit distance based on keyboard layout
clavier Measure edit distance based on keyboard layout. Table of contents Table of contents Introduction Installation User guide Keyboard layouts Dist
Deep Learning pipeline for motor-imagery classification.
BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De
A movie recommender which recommends the movies belonging to the genre that user has liked the most.
Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe
Snake (PyGame-based) port for Minecraft:Bedrock Edition using PEWSAPI
Snake_PEWSAPI Snake (PyGame-based) port for Minecraft:Bedrock Edition using PEWSAPI And we are not going to make any change to the original Snake sour
A Neural Network based chess engine and GUI made with Python and Tensorflow/Keras.
Haxaw-Chess Haxaw: Haxaw is the Neural Network based chess engine made with Python and Tensorflow/Keras. Also uses the python-chess library. (WIP: Imp
Using machine learning to predict undergrad college admissions.
College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un
The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.
VarCnn: The Deep Learning Powered VAR
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library
A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs
auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model structure called 'GRU(gated recurrent unit)'.
PyTorch GPU implementation of the ES-RNN model for time series forecasting
Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series
Implementation of deep learning models for time series in PyTorch.
List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
Fully Convlutional Neural Networks for state-of-the-art time series classification
Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin
Machine Learning for Time-Series with Python.Published by Packt
Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am
Deep Learning for Time Series Classification
Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re
U-Time: A Fully Convolutional Network for Time Series Segmentation
U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.
Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals
Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of
DeltaPy - Tabular Data Augmentation (by @firmai)
DeltaPy — Tabular Data Augmentation & Feature Engineering Finance Quant Machine Learning ML-Quant.com - Automated Research Repository Introduction T
A Python package for time series augmentation
tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection
Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat
Library for time-series-forecasting-as-a-service.
TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi
Python implementation of the Learning Time-Series Shapelets method, that learns a shapelet-based time-series classifier with gradient descent.
shaplets Python implementation of the Learning Time-Series Shapelets method by Josif Grabocka et al., that learns a shapelet-based time-series classif
Whisper is a file-based time-series database format for Graphite.
Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and
Elastic weight consolidation technique for incremental learning.
Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont
Algorithms for outlier, adversarial and drift detection
Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d
Automated Time Series Forecasting
AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod
Machine Learning Time-Series Platform
cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour
Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin
Forecast dynamically at scale with this unique package. pip install scalecast
🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels
Hierarchical Time Series Forecasting with a familiar API
scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work
An open source python library for automated feature engineering
"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to
Python package for dynamic system estimation of time series
PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.
TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re
WTTE-RNN a framework for churn and time to event prediction
WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017
Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017
pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu
A PyTorch implementation of the continual learning experiments with deep neural networks
Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks
TreeSubstitutionCipher - Encryption system based on trees and substitution
Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes
Software Engineer Salary Prediction
Based on 2021 stack overflow data, this machine learning web application helps one predict the salary based on years of experience, level of education and the country they work in.
Medical appointments No-Show classifier
Medical Appointments No-shows Why do 20% of patients miss their scheduled appointments? A person makes a doctor appointment, receives all the instruct
Regularization and Feature Selection in Least Squares Temporal Difference Learning
Regularization and Feature Selection in Least Squares Temporal Difference Learning Description This is Python implementations of Least Angle Regressio
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.
Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.
Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui
A small, Pygame-based library project intended for personal use.
EzyGame Version 0.0.1 A simple library project intended for personal use with Pygame. Warning: I am a very amateur programmer, so the code will probab
DevSecOps pipeline for Python based web app using Jenkins, Ansible, AWS, and open-source security tools and checks.
DevSecOps pipeline for Python Web App A Jenkins end-to-end DevSecOps pipeline for Python web application, hosted on AWS Ubuntu 20.04 Note: This projec
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort
Transformers based fully on MLPs
Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法
PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.
Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex
Repository of continual learning papers
Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR
A self-supervised learning framework for audio-visual speech
AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.
The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.
WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp
A simple wrapper to analyse and visualise reinforcement learning agents' behaviour in the environment.
Visrl Visrl (pronounced "visceral") is a simple wrapper to analyse and visualise reinforcement learning agents' behaviour in the environment. Reinforc
Covid-polygraph - a set of Machine Learning-driven fact-checking tools
Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.
Tutorial on scikit-learn and IPython for parallel machine learning
Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra
Datasets, tools, and benchmarks for representation learning of code.
The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided
General Assembly's 2015 Data Science course in Washington, DC
DAT8 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (8/18/15 - 10/29/15). Instructor: Kevin Markham (
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques
Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While
🔅 Shapash makes Machine Learning models transparent and understandable by everyone
🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y
SphereFace: Deep Hypersphere Embedding for Face Recognition
SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa
Creative Applications of Deep Learning w/ Tensorflow
Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th
A Collection of Cheatsheets, Books, Questions, and Portfolio For DS/ML Interview Prep
Here are the sections: Data Science Cheatsheets Data Science EBooks Data Science Question Bank Data Science Case Studies Data Science Portfolio Data J
Deep Learning Specialization by Andrew Ng, deeplearning.ai.
Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks
Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro
🤖 ⚡ scikit-learn tips
🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.
Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way
HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard
List of papers, code and experiments using deep learning for time series forecasting
Deep Learning Time Series Forecasting List of state of the art papers focus on deep learning and resources, code and experiments using deep learning f
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT.
Koç University deep learning framework.
Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU
Searches through git repositories for high entropy strings and secrets, digging deep into commit history
truffleHog Searches through git repositories for secrets, digging deep into commit history and branches. This is effective at finding secrets accident
Setup and customize deep learning environment in seconds.
Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le
Hide screen when boss is approaching.
BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac
Not Suitable for Work (NSFW) classification using deep neural network Caffe models.
Open nsfw model This repo contains code for running Not Suitable for Work (NSFW) classification deep neural network Caffe models. Please refer our blo
Anomaly detection related books, papers, videos, and toolboxes
Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify
Largest list of models for Core ML (for iOS 11+)
Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v
Distributed deep learning on Hadoop and Spark clusters.
Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version
My solution to the book A Collection of Data Science Take-Home Challenges
DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository
Very efficient backup system based on the git packfile format, providing fast incremental saves and global deduplication
Very efficient backup system based on the git packfile format, providing fast incremental saves and global deduplication (among and within files, including virtual machine images). Current release is 0.31, and the development branch is master. Please post problems or patches to the mailing list for discussion (see the end of the README below).
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".
Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)
Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention
Official repository for "Orthogonal Projection Loss" (ICCV'21)
Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page
Learning with Noisy Labels via Sparse Regularization, ICCV2021
Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"
DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte