61 Repositories
Python PSPNet-TF-Reproduce Libraries
Materials to reproduce our findings in our stories, "Amazon Puts Its Own 'Brands' First Above Better-Rated Products" and "When Amazon Takes the Buy Box, it Doesn’t Give it up"
Amazon Brands and Exclusives This repository contains code to reproduce the findings featured in our story "Amazon Puts Its Own 'Brands' First Above B
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"
The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch
Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)
T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet
🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-
This repo contains code to reproduce all experiments in Equivariant Neural Rendering
Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col
Reproduce partial features of DeePMD-kit using PyTorch.
DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.
The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine
Code to reproduce experiments in the paper "Task-Oriented Dialogue as Dataflow Synthesis" (TACL 2020).
Code to reproduce experiments in the paper "Task-Oriented Dialogue as Dataflow Synthesis" (TACL 2020).
Sacred is a tool to help you configure, organize, log and reproduce experiments developed at IDSIA.
Sacred Every experiment is sacred Every experiment is great If an experiment is wasted God gets quite irate Sacred is a tool to help you configure, or
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.
marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.
The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"
TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.
DivNoising is an unsupervised denoising method to generate diverse denoised samples for any noisy input image. This repository contains the code to reproduce the results reported in the paper https://openreview.net/pdf?id=agHLCOBM5jP
DivNoising: Diversity Denoising with Fully Convolutional Variational Autoencoders Mangal Prakash1, Alexander Krull1,2, Florian Jug2 1Authors contribut
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".
Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).
Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.
ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"
AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.
GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.
ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.
ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with
PyTorch implementation of PSPNet
PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe
Training PSPNet in Tensorflow. Reproduce the performance from the paper.
Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support
TensorFlow-based implementation of "Pyramid Scene Parsing Network".
PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet
Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.
PSPNet in Chainer
PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+
Pyramid Scene Parsing Network, CVPR2017.
Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation
Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.
semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as
PyTorch Implementations for DeeplabV3 and PSPNet
Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
Python library with Neural Networks for Image Segmentation based on Keras and TensorFlow. The main features of this library are: High level API (just
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.
Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)
Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.
B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.
B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript
Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses
Segmentation models with pretrained backbones. PyTorch.
Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to
Code to reproduce the results for Compositional Attention: Disentangling Search and Retrieval.
Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval
Code to reproduce the results for Compositional Attention
Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer
MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"
Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.
Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
End-to-end image segmentation kit based on PaddlePaddle.
English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the AutoNUE@CVPR 2021 challenge, where
Code to reproduce experiments in the paper "Explainability Requires Interactivity".
Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)
pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm
This repo uses a combination of logits and feature distillation method to teach the PSPNet model of ResNet18 backbone with the PSPNet model of ResNet50 backbone. All the models are trained and tested on the PASCAL-VOC2012 dataset.
PSPNet-logits and feature-distillation Introduction This repository is based on PSPNet and modified from semseg and Pixelwise_Knowledge_Distillation_P
Reproduce digital electronics in Python
Pylectronics Reproduce digital electronics in Python Report Bug · Request Feature Table of Contents About The Project Getting Started Prerequisites In
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.
PyTorch implementation of PSPNet segmentation network
pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different
This repo will contain code to reproduce and build upon understanding transfer learning
What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"
VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN
OpenMMLab Semantic Segmentation Toolbox and Benchmark.
Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based
A semantic segmentation toolbox based on PyTorch
Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)
Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"
gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing