43 Repositories
Python Prior-LT Libraries
Learn the basics of Python. These tutorials are for Python beginners. so even if you have no prior knowledge of Python, you won’t face any difficulty understanding these tutorials.
01_Python_Introduction Introduction 👋 Python is a modern, robust, high level programming language. It is very easy to pick up even if you are complet
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior
GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]
ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes
Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu
Blind Video Temporal Consistency via Deep Video Prior
deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.
PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”
HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The
Pytorch implementation of local motion and contrast prior driven deep network (MoCoPnet)
MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr
prior-based-losses-for-medical-image-segmentation
Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based
Prior-Guided Multi-View 3D Head Reconstruction
Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”
Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior. The code will release soon. Implementation Python3 PyTorch=1.0 NVIDIA GPU+
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data
Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels
PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].
VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"
PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)
DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"
Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)
DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e
Neural Scene Flow Prior (NeurIPS 2021 spotlight)
Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask
Gradient Inversion with Generative Image Prior
Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)
SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"
##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).
PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]
Original code for "Zero-Shot Domain Adaptation with a Physics Prior"
Zero-Shot Domain Adaptation with a Physics Prior [arXiv] [sup. material] - ICCV 2021 Oral paper, by Attila Lengyel, Sourav Garg, Michael Milford and J
Image restoration with neural networks but without learning.
Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.
Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy
Code for Text Prior Guided Scene Text Image Super-Resolution
Code for Text Prior Guided Scene Text Image Super-Resolution
Evaluating different engineering tricks that make RL work
Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"
Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo
Planar Prior Assisted PatchMatch Multi-View Stereo
ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio
Python linting made easy. Also a casual yet honorific way to address individuals who have entered an organization prior to you.
pysen What is pysen? pysen aims to provide a unified platform to configure and run day-to-day development tools. We envision the following scenarios i
(under submission) Bayesian Integration of a Generative Prior for Image Restoration
BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p