23 Repositories
Python ULTRA Libraries
Lane assist for ETS2, built with the ultra-fast-lane-detection model.
Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-
Develop and deploy applications with the Ionburst Cloud Python SDK.
Ionburst SDK for Python The Ionburst SDK for Python enables developers to easily integrate with Ionburst Cloud, building in ultra-secure and private o
FastWSGI - An ultra fast WSGI server for Python 3
FastWSGI - An ultra fast WSGI server for Python 3
UF3: a python library for generating ultra-fast interatomic potentials
Ultra-Fast Force Fields (UF3) S. R. Xie, M. Rupp, and R. G. Hennig, "Ultra-fast interpretable machine-learning potentials", preprint arXiv:2110.00624
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox
Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,
Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation
UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A
Unbiased Learning To Rank Algorithms (ULTRA)
This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures
A ultra-lightweight 3D renderer of the Tensorflow/Keras neural network architectures
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)
Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra
An ultra fast cross-platform multiple screenshots module in pure Python using ctypes.
Python MSS from mss import mss # The simplest use, save a screen shot of the 1st monitor with mss() as sct: sct.shot() An ultra fast cross-platfo
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.
BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.
Ultra fast JSON decoder and encoder written in C with Python bindings
UltraJSON UltraJSON is an ultra fast JSON encoder and decoder written in pure C with bindings for Python 3.6+. Install with pip: $ python -m pip insta
Ultra fast JSON decoder and encoder written in C with Python bindings
UltraJSON UltraJSON is an ultra fast JSON encoder and decoder written in pure C with bindings for Python 3.6+. Install with pip: $ python -m pip insta
Ultra fast asyncio event loop.
uvloop is a fast, drop-in replacement of the built-in asyncio event loop. uvloop is implemented in Cython and uses libuv under the hood. The project d