612 Repositories
Python adversarial-example Libraries
State-Relabeling Adversarial Active Learning
State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models. Advbox give a command line tool to generate adversarial examples with Zero-Coding.
Example code for the book Fluent Python, 1st Edition (O'Reilly, 2015)
Fluent Python, First Edition: example code This repository is archived and will not be updated.
A simple example for calling C++ functions in Python by `ctypes`.
ctypes-example A simple example for calling C++ functions in Python by ctypes. Features call C++ function int bar(int* value, char* msg) with argumene
Simple web app example serving a PyTorch model using streamlit and FastAPI
streamlit-fastapi-model-serving Simple example of usage of streamlit and FastAPI for ML model serving described on this blogpost and PyConES 2020 vide
This app is a simple example of using Strealit to create a financial data web app.
Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)
Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation
IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)
Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra
TSIT: A Simple and Versatile Framework for Image-to-Image Translation
TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation
Ganilla - Official Pytorch implementation of GANILLA
GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample
DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation
GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation
CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S
Adversarial Self-Defense for Cycle-Consistent GANs
Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape
Official PyTorch implementation of GDWCT (CVPR 2019, oral)
This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation
InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of
AsymmetricGAN - Dual Generator Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
AsymmetricGAN for Image-to-Image Translation AsymmetricGAN Framework for Multi-Domain Image-to-Image Translation AsymmetricGAN Framework for Hand Gest
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)
SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation
Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation
AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders
Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks
DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a
Minimal example of how to use pytest with automated 'devops' style automated test runs
Pytest python example with automated testing This is a minimal viable example of pytest with an automated run of tests for every push/merge into the m
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples Above is an adversarial example: the slightly pert
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.
Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o
Polars-fun - Example notebooks for how to use pola.rs
polars-fun Polars is an awesome Rust DataFrame library with Python language bindings. This repo makes it easy to run Polars code on your local machine
Adversarial Attacks are Reversible via Natural Supervision
Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018
Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"
MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1
Training neural models with structured signals.
Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured
An example which streams RGB-D images over spout.
Spout RGB-D Example An example which streams RGB-D images over spout with visiongraph. Due to the spout dependency this currently only works on Window
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."
Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.
Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py
Example Python codes that works with MySQL and Excel files (.xlsx)
Python x MySQL x Excel by Zinglecode Example Python codes that do the processes between MySQL database and Excel spreadsheet files. YouTube videos MyS
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"
On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p
An example of Django project with basic user functionality and account activation.
Simple Django Login and Registration An example of Django project with basic user functionality. Screenshots Log In Create an account Authorized page
Adversarial Autoencoders
Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)
Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm
A minimalistic example of preparing a model for (synchronous) inference in production.
A minimalistic example of preparing a model for (synchronous) inference in production.
Example projects built using Piccolo.
Piccolo examples Here are some example Piccolo projects. Tutorials headless blog fastapi Build a documented API with an admin in minutes! Live project
A simple example of deploying FastAPI as a Zeit Serverless Function
FastAPI Zeit Now Deploy a FastAPI app as a Zeit Serverless Function. This repo deploys the FastAPI SQL Databases Tutorial to demonstrate how a FastAPI
Example app to be deployed to AWS as an API Gateway / Lambda Stack
Disclaimer I won't answer issues or emails regarding the project anymore. The project is old and not maintained anymore. I'm not sure if it still work
This project is a realworld backend based on fastapi+mongodb
This project is a realworld backend based on fastapi+mongodb. It can be used as a sample backend or a sample fastapi project with mongodb.
Example GUI for Command line capable machine learning programs
Example GUI for Command line capable machine learning programs This is an example GUI made in PysimpleGUI and Tkinter, mainly for machine learning pro
Tensorflow implementation for "Improved Transformer for High-Resolution GANs" (NeurIPS 2021).
HiT-GAN Official TensorFlow Implementation HiT-GAN presents a Transformer-based generator that is trained based on Generative Adversarial Networks (GA
MS Graph API authentication example with Fast API
MS Graph API authentication example with Fast API What it is & does This is a simple python service/webapp, using FastAPI with server side rendering,
Resources for teaching & learning practical data visualization with python.
Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania
680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths
Example Code Notebooks for Data Visualization in Python
This repository contains sample code scripts for creating awesome data visualizations from scratch using different python libraries (such as matplotli
Eth brownie struct encoding example
eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin
StyleSwin: Transformer-based GAN for High-resolution Image Generation
StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang
JSNAPY example: Validate NAT policies
JSNAPY example: Validate NAT policies Overview This example will show how to use JSNAPy to make sure the expected NAT policy matches are taking place.
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a
An example of matrix addition, demonstrating the basic method of Python calling C library functions
Example for Python call C functions An example of matrix addition, demonstrating the basic method of Python calling C library functions. How to run Bu
Example how to deploy deep learning model with aiohttp.
aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B
Example for how to package a Python library based on Cython.
Cython sample module This project is an example of a module that can be built using Cython. It is an upgrade from a similar model developed by Arin Kh
An AI for Music Generation
An AI for Music Generation
Example of my qtile config using the gruvbox colorscheme.
QTILE config Example of my qtile config using the gruvbox colorscheme. unicodes.py unicodes.py returns a widget.TextBox with a unicode. Currently it c
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier
LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network
Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas
A full pipeline AutoML tool for tabular data
HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation
Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation
SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).
AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations
Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium
Numerai tournament example scripts using NN and optuna
numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based
Adversarial Learning for Modeling Human Motion
Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l
An implementation of "Learning human behaviors from motion capture by adversarial imitation"
Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear
That is a example of a Book app on Python, made with support of all JS libraries on React framework
React+Python Books App You can use this repository whenever you want Used for a video Create the database: python -m dbutils Start the web server: pyt
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,
Ensembling Off-the-shelf Models for GAN Training
Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".
TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C
Ensembling Off-the-shelf Models for GAN Training
Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br
GANformer: Generative Adversarial Transformers
GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch
A collection and example code of every topic you need to know about in the basics of Python.
The Python Beginners Guide: Master The Python Basics Tonight This guide is a collection of every topic you need to know about in the basics of Python.
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code
A Python description of the Kinematic Bicycle Model with an animated example.
Kinematic Bicycle Model Abstract A python library for the Kinematic Bicycle model. The Kinematic Bicycle is a compromise between the non-linear and li
Пример использования GraphQL Ariadne с FastAPI и сравнение его с GraphQL Graphene FastAPI
FastAPI Ariadne Example Пример использования GraphQL Ariadne с FastAPI и сравнение его с GraphQL Graphene FastAPI - GitHub ###Запуск на локальном окру
Ingress patch example by Kustomize
Ingress patch example by Kustomize
Adversarial Examples for Extreme Multilabel Text Classification
Adversarial Examples for Extreme Multilabel Text Classification The code is adapted from the source codes of BERT-ATTACK [1], APLC_XLNet [2], and Atte
Generate high quality pictures. GAN. Generative Adversarial Networks
ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)
Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th
SeqAttack: a framework for adversarial attacks on token classification models
A framework for adversarial attacks against token classification models
Cycle Consistent Adversarial Domain Adaptation (CyCADA)
Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi
Synthetic Data Generation for tabular, relational and time series data.
An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github
Code for ShadeGAN (NeurIPS2021) A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model