126 Repositories
Python demand-forecasting Libraries
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch
LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is implemented based on PyTorch, and includes all the necessary steps or components related to traffic prediction into a systematic pipeline.
darts is a Python library for easy manipulation and forecasting of time series.
A python library for easy manipulation and forecasting of time series.
Code for Towards Streaming Perception (ECCV 2020) :car:
sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.
Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.
TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest
Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,
A minimal Streamlit app showing how to launch and stop a FastAPI process on demand
Simple Streamlit + FastAPI Integration A minimal Streamlit app showing how to launch and stop a FastAPI process on demand. The FastAPI /run route simu
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.
Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai
Greykite: A flexible, intuitive and fast forecasting library
The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting
Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang
AtsPy: Automated Time Series Models in Python (by @firmai)
Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp
Time series forecasting with PyTorch
Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time
A python library for easy manipulation and forecasting of time series.
Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from
Probabilistic time series modeling in Python
GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se
A unified framework for machine learning with time series
Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible
ARCH models in Python
arch Autoregressive Conditional Heteroskedasticity (ARCH) and other tools for financial econometrics, written in Python (with Cython and/or Numba used
A spherical CNN for weather forecasting
DeepSphere-Weather - Deep Learning on the sphere for weather/climate applications. The code in this repository provides a scalable and flexible framew
Hubble is a modular, open-source security compliance framework. The project provides on-demand profile-based auditing, real-time security event notifications, alerting, and reporting. HubbleStack is a free and open source project made possible by Adobe. https://github.com/adobe
Welcome to HubbleStack!! You can find the docs here You can file an issue here Follow us on Twitter! Development Below are sample instructions to setu
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar
A tool to convert AWS EC2 instances back and forth between On-Demand and Spot billing models.
ec2-spot-converter This tool converts existing AWS EC2 instances back and forth between On-Demand and 'persistent' Spot billing models while preservin
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.
Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin
The windML framework provides an easy-to-use access to wind data sources within the Python world, building upon numpy, scipy, sklearn, and matplotlib. Renewable Wind Energy, Forecasting, Prediction
windml Build status : The importance of wind in smart grids with a large number of renewable energy resources is increasing. With the growing infrastr
A unified framework for machine learning with time series
Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible