24 Repositories
Python encoders Libraries
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators
AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi
DocEnTr: An end-to-end document image enhancement transformer
DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.
DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to
Visual dialog agents with pre-trained vision-and-language encoders.
Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr
OpenAI CLIP text encoders for multiple languages!
Multilingual-CLIP OpenAI CLIP text encoders for any language Colab Notebook · Pre-trained Models · Report Bug Overview OpenAI recently released the pa
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania
546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path
Texture mapping with variational auto-encoders
vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.
The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".
Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders
PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit
A library of sklearn compatible categorical variable encoders
Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs
Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin
Generative Art Using Neural Visual Grammars and Dual Encoders
Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.
Cross-platform command-line AV1 / VP9 / HEVC / H264 encoding framework with per scene quality encoding
Av1an A cross-platform framework to streamline encoding Easy, Fast, Efficient and Feature Rich An easy way to start using AV1 / HEVC / H264 / VP9 / VP
PyTorch Implement of Context Encoders: Feature Learning by Inpainting
Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.
MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration
State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra
A library of sklearn compatible categorical variable encoders
Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage
Lightwood is Legos for Machine Learning.
Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu