2591 Repositories
Python graph-neural-networks Libraries
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization
CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches
Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa
A python script to visualise explain plans as a graph using graphviz
README Needs to be improved Prerequisites Need to have graphiz installed on the machine. Refer to https://graphviz.readthedocs.io/en/stable/manual.htm
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)
OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.
Papers about explainability of GNNs
Papers about explainability of GNNs
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".
:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification
Extracts data from the database for a graph-node and stores it in parquet files
subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us
Neural style in TensorFlow! 🎨
neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T
"Neural Turing Machine" in Tensorflow
Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot
Deep Q&A Table of Contents Presentation Installation Running Chatbot Web interface Results Pretrained model Improvements Upgrade Presentation This wor
Unsupervised Image to Image Translation with Generative Adversarial Networks
Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria
The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"
DAGAN This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruct
Neural Network to colorize grayscale images
#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au
Neural Caption Generator with Attention
Neural Caption Generator with Attention Tensorflow implementation of "Show
Dynamic Capacity Networks using Tensorflow
Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"
Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi
Convolutional Neural Network for Text Classification in Tensorflow
This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo
End-To-End Memory Network using Tensorflow
MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo
Tensorflow implementation of Character-Aware Neural Language Models.
Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices
Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In
CNN visualization tool in TensorFlow
tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification
TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope
Hierarchical Attentive Recurrent Tracking
Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte
A Tensorfflow implementation of Attend, Infer, Repeat
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)
Classify music genre from a 10 second sound stream using a Neural Network.
MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !
Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv
Run Keras models in the browser, with GPU support using WebGL
**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose
A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.
Plots the graph of a function with ASCII characters.
ASCII Graph Plotter Plots the graph of a function with ASCII characters. See the change log here. Developed by InformaticFreak (c) 2021 How to use py
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.
NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of
Training Structured Neural Networks Through Manifold Identification and Variance Reduction
Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari
Learning Tracking Representations via Dual-Branch Fully Transformer Networks
Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and
A repository for benchmarking neural vocoders by their quality and speed.
License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para
Steerable discovery of neural audio effects
Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often
A simple library that implements CLIP guided loss in PyTorch.
pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)
Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica
Alternatives to Deep Neural Networks for Function Approximations in Finance
Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit
Convert ONNX model graph to Keras model format.
Convert ONNX model graph to Keras model format.
CTO (Call Tree Overviewer) is an IDA plugin for creating a simple and efficiant function call tree graph
CTO (Call Tree Overviewer) CTO (Call Tree Overviewer) is an IDA plugin for creating a simple and efficiant function call tree graph. It can also summa
Object Detection with YOLOv3
Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"
CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar
Fast Neural Representations for Direct Volume Rendering
Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).
UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi
TC-GNN with Pytorch integration
TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti
PennyLane is a cross-platform Python library for differentiable programming of quantum computers
PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)
Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.
A Chinese to English Neural Model Translation Project
ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch
NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP
🔪 Elimination based Lightweight Neural Net with Pretrained Weights
ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient
With Py-Autocrack you can crack WPA2 networks in no time.
With Py-Autocrack you can crack WPA2 networks in no time. All based on Aircrack-ng and Crunch.
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.
DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling
Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In
Noise Conditional Score Networks (NeurIPS 2019, Oral)
Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model
This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;
MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh
Neural HMMs are all you need (for high-quality attention-free TTS)
Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"
Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]
This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos
ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch
Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a
End-2-end speech synthesis with recurrent neural networks
Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p
PyTorch implementation of the Pose Residual Network (PRN)
Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code
Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas
Educational 2D SLAM implementation based on ICP and Pose Graph
slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"
To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",
K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R
A single model that parses Universal Dependencies across 75 languages.
A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021
HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob
AAAI 2022: Stationary diffusion state neural estimation
Stationary Diffusion State Neural Estimation Although many graph-based clustering methods attempt to model the stationary diffusion state in their obj
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO
Codebase for Inducing Causal Structure for Interpretable Neural Networks
Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"
This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"
ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]
Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving
GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh
Palo Alto Networks PAN-OS SDK for Python
Palo Alto Networks PAN-OS SDK for Python The PAN-OS SDK for Python (pan-os-python) is a package to help interact with Palo Alto Networks devices (incl
Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from time series data.
ts2vg: Time series to visibility graphs The Python ts2vg package provides high-performance algorithm implementations to build visibility graphs from t
PLUR is a collection of source code datasets suitable for graph-based machine learning.
PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.
Learning to Rewrite for Non-Autoregressive Neural Machine Translation
RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural
Another pytorch implementation of FCN (Fully Convolutional Networks)
FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
A light weight data augmentation tool for training CNNs and Viola Jones detectors
hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016
Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo
Convolutional Neural Networks
Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a
Codebase for testing whether hidden states of neural networks encode discrete structures.
structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.
The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS