139 Repositories
Python linear-algebra Libraries
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.
deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i
Simple linear model implementations from scratch.
Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling
VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be
Visualizations of linear algebra algorithms for people who want a deep understanding
Visualising algorithms on symmetric matrices Examples QR algorithm and LR algorithm Here, we have a GIF animation of an interactive visualisation of t
A PyTorch Implementation of the Luna: Linear Unified Nested Attention
Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
Relative Positional Encoding for Transformers with Linear Complexity
Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"
Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape
A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.
30 Days Of Machine Learning Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
A New, Interactive Approach to Learning Python
This is the repository for The Python Workshop, published by Packt. It contains all the supporting project files necessary to work through the course from start to finish.
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms
A computer algebra system written in pure Python
SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
A complete guide to start and improve in machine learning (ML)
A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art techniques!
xitorch: differentiable scientific computing library
xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"
Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.
Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me
Large-scale linear classification, regression and ranking in Python
lightning lightning is a library for large-scale linear classification, regression and ranking in Python. Highlights: follows the scikit-learn API con
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.
Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co
An implementation of Performer, a linear attention-based transformer, in Pytorch
Performer - Pytorch An implementation of Performer, a linear attention-based transformer variant with a Fast Attention Via positive Orthogonal Random
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks
PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted
Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm.
LPC_for_TTS Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm. 基于Levinson-Durbin
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses
Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.
Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D Diffusion Equation using Standard Wall Function, 2D Heat Conduction Convection equation with Dirichlet & Neumann BC, full Navier-Stokes Equation coupled with Poisson equation for Cavity and Channel flow in 2D using Finite Difference Method & Finite Volume Method.
Navier-Stokes-numerical-solution-using-Python- Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D D
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2
A computer algebra system written in pure Python
SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part
Statsmodels: statistical modeling and econometrics in Python
About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.
Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose
Simple machine learning library / 簡單易用的機器學習套件
FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
H2O H2O is an in-memory platform for distributed, scalable machine learning. H2O uses familiar interfaces like R, Python, Scala, Java, JSON and the Fl
PyArmadillo: an alternative approach to linear algebra in Python
PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.