174 Repositories
Python load-flow Libraries
Python Package for DataHerb: create, search, and load datasets.
The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.
PyPSA: Python for Power System Analysis
1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju
SinGlow: Generative Flow for SVS tasks in Tensorflow 2
SinGlow is a part of my Singing voice synthesis system. It can extract features of sound, particularly songs and musics. Then we can use these features (or perfect encoding) for feature migrating tasks. For example migrate features of real singers' song to those virtual singers' songs.
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.
Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s
TensorFlow implementation of "Variational Inference with Normalizing Flows"
[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"
Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f
A fast model to compute optical flow between two input images.
DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch
pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according
UI to save and load gnome-shell extension templates.
Gnome Extensions Loader GUI to save and load gnome shell extensions and extension settings. This app makes it easier to share your gnome extensions se
Know your customer pipeline in apache air flow
KYC_pipline Know your customer pipeline in apache air flow For a successful pipeline run take these steps: Run you Airflow server Admin - connection
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis
WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install
PyTorch implementations of normalizing flow and its variants.
PyTorch implementations of normalizing flow and its variants.
Pytorch implementation of FlowNet by Dosovitskiy et al.
FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE
smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi
Load Django Settings from Environmental Variables with One Magical Line of Code
DjEnv: Django + Environment Load Django Settings Directly from Environmental Variables features modify django configuration without modifying source c
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.
load .txt to train YOLOX, same as Yolo others
YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas
Deep Learning ❤️ OneFlow
Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V
Generates realistic traffic for load testing tile servers
Generates realistic traffic for load testing tile servers. Useful for: Measuring throughput, latency and concurrency of your tile serving stack. Ident
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling
VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,
Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack
Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at
Generative Flow Networks
Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec
Phishing Abusing Microsoft 365 OAuth Authorization Flow
Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at
LOC-FLOW is an “hands-free” earthquake location workflow to process continuous seismic records
LOC-FLOW is an “hands-free” earthquake location workflow to process continuous seismic records: from raw waveforms to well located earthquakes with magnitude calculations. The package assembles several popular routines for sequential earthquake location refinements, suitable for catalog building ranging from local to regional scales.
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.
esguard provides a Python decorator that waits for processing while monitoring the load of Elasticsearch.
esguard esguard provides a Python decorator that waits for processing while monitoring the load of Elasticsearch. Quick Start You need to launch elast
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks
flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.
Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮
Portal is the fastest way to load and visualize your deep neural networks on images and videos 🔮
A Flow-based Generative Network for Speech Synthesis
WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis
WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions
This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions
glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions
box is a text-based visual programming language inspired by Unreal Engine Blueprint function graphs.
Box is a text-based visual programming language inspired by Unreal Engine blueprint function graphs. $ cat factorial.box ┌─ƒ(Factorial)───┐
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch
LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is implemented based on PyTorch, and includes all the necessary steps or components related to traffic prediction into a systematic pipeline.
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.
MODeflattener deobfuscates control flow flattened functions obfuscated by OLLVM using Miasm.
An tiny CLI to load data from a JSON File during development.
JSON Server - An tiny CLI to load data from a JSON File during development.
A lightweight deep network for fast and accurate optical flow estimation.
FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong
Learning Optical Flow from a Few Matches (CVPR 2021)
Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.
Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t
Pytorch implementation of MaskFlownet
MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals
Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,
Code for "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clouds", CVPR 2021
PV-RAFT This repository contains the PyTorch implementation for paper "PV-RAFT: Point-Voxel Correlation Fields for Scene Flow Estimation of Point Clou
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".
Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)
Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse
Transparently load variables from environment or JSON/YAML file.
A thin wrapper over Pydantic's settings management. Allows you to define configuration variables and load them from environment or JSON/YAML file. Also generates initial configuration files and documentation for your defined configuration.
Just Go with the Flow: Self-Supervised Scene Flow Estimation
Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,
Educational project on how to build an ETL (Extract, Transform, Load) data pipeline, orchestrated with Airflow.
ETL Pipeline with Airflow, Spark, s3, MongoDB and Amazon Redshift
Demo code for paper "Learning optical flow from still images", CVPR 2021.
Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.
FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab
Automatically load stolen cookies from ChromePass
AutoCookie - Automatically loading stolen cookies from ChromePass View Demo · Report Bug · Request Feature Table of Contents About the Project Getting
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity
UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021
Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20
Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D Diffusion Equation using Standard Wall Function, 2D Heat Conduction Convection equation with Dirichlet & Neumann BC, full Navier-Stokes Equation coupled with Poisson equation for Cavity and Channel flow in 2D using Finite Difference Method & Finite Volume Method.
Navier-Stokes-numerical-solution-using-Python- Python script for Linear, Non-Linear Convection, Burger’s & Poisson Equation in 1D & 2D, 1D D
MiniJVM is simple java virtual machine written by python language, it can load class file from file system and run it.
MiniJVM MiniJVM是一款使用python编写的简易JVM,能够从本地加载class文件并且执行绝大多数指令。 支持的功能 1.从本地磁盘加载class并解析 2.支持绝大多数指令集的执行 3.支持虚拟机内存分区以及对象的创建 4.支持方法的调用和参数传递 5.支持静态代码块的初始化 不支
Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D
Code for "Learning to Segment Rigid Motions from Two Frames".
rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.
Fast and Easy Infinite Neural Networks in Python
Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural
Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory, network, i/o, load and disk metrics. Additionally, it features an API for implementing custom collectors for gathering metrics from almost any source.
Diamond Diamond is a python daemon that collects system metrics and publishes them to Graphite (and others). It is capable of collecting cpu, memory,
A Static Analysis Tool for Detecting Security Vulnerabilities in Python Web Applications
This project is no longer maintained March 2020 Update: Please go see the amazing Pysa tutorial that should get you up to speed finding security vulne
Performant type-checking for python.
Pyre is a performant type checker for Python compliant with PEP 484. Pyre can analyze codebases with millions of lines of code incrementally – providi
Load and performance benchmark tool
Yandex Tank Yandextank has been moved to Python 3. Latest stable release for Python 2 here. Yandex.Tank is an extensible open source load testing tool
One-stop solution for HTTP(S) testing.
HttpRunner HttpRunner is a simple & elegant, yet powerful HTTP(S) testing framework. Enjoy! ✨ 🚀 ✨ Design Philosophy Convention over configuration ROI
Scalable user load testing tool written in Python
Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"
C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/
Scalable user load testing tool written in Python
Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst
Scalable user load testing tool written in Python
Locust Locust is an easy to use, scriptable and scalable performance testing tool. You define the behaviour of your users in regular Python code, inst
Performant type-checking for python.
Pyre is a performant type checker for Python compliant with PEP 484. Pyre can analyze codebases with millions of lines of code incrementally – providi